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EXERCISE 1

1. Consider the manipulator sketched in the picture:
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Find the expression of the inertia matrix B(q) of the manipulator1

Denavit-Hartenberg frames can be defined as sketched in this picture:
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Computations of the Jacobians:
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For the above computations, we can make reference to the following picture:
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and to the following auxiliary vectors:

pl2 =

 a1 + l2c2
0

d1 + l2s2

 ,p1 =

 a1
0
d1

 , z1 =

 0
−1
0


The inertia matrix can be computed now:
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2. Ignoring the Coriolis and centrifugal terms, write the dynamic model of the manipulator.

Since the vertical axis is the x0 axis pointing upwards, the gravity acceleration vector is:
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The gravitational torques are thus:
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Neglecting Coriolis and centrifugal terms, the dynamic model can be written as:



B(q)q̈ + g(q) = τ

The two equations that form the model are:

(m1 +m2) d̈1 +m2l2c2ϑ̈2 = τ1

m2l2c2d̈1 +
(
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ϑ̈2 −m2gl2s2 = τ2

3. Show that the dynamic model is linear with respect to a certain set of dynamic parameters.

The model can be written in the following form which is linear in the dynamic parameters:

Y (q, q̇, q̈) Π = τ

where the vector of dynamic parameters is expressed as:
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 m1 +m2
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while the regressor matrix is:

Y =

[
d̈1 c2ϑ̈2 0

0 c2d̈1 − gs2 ϑ̈2

]

4. Write the expression of a “PD + gravity compensation” control law in the joint space for this specific
manipulator.

The vector equation of the control law is:

τ = KP (qd − q)−KP q̇ + g(q)

and corresponds, for the given manipulator, to the following two equations:

τ1 = KP1(qd1 − q1)−KD1 q̇1

τ2 = KP2(qd2 − q2)−KD2 q̇2 −m2gl2s2

EXERCISE 2

1. Consider an interaction task of a manipulator, with a frictionless and rigid surface, as in this picture:



Assume a point contact and draw a contact frame directly on the picture. Based on this frame and
neglecting angular velocities and moments, express the natural and the artificial constraints for this
problem, and specify the selection matrix.

The contact frame can be conveniently chosen as in the following picture:
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The natural constraints and artificial constraints can be easily identified:

Natural constraints Artificial constraints

f cx ṗcx
f cy ṗcy
ṗcz f cz

The selection matrix is thus:

Σ =

 0 0 0
0 0 0
0 0 1



2. Explain what an implicit force controller is and why it might be convenient with respect to an explicit
solution.

An implicit force control is closed around the position control loops. This is usually the only viable
solution to implement force control, since the reliable and industrially safe position controllers cannot
be bypassed.

3. Suppose now that along the force controlled direction an explicit force controller has to be designed.
Sketch the block diagram of such controller and design it taking a bandwidth of 30 rad/s.

The block diagram of an explicit force controller in case of rigid surface is sketched in the picture:
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where the transfer function Gf (s) is practically a unitary gain. We can then consider as a force
controller an integrator:

Rf (s) =
kif
s

and the gain can be set equal to the desired bandwidth: kif = 30.



4. Repeat the process in case an implicit force controller, for the same bandwidth, has to be designed.

The block diagram of an implicit force controller in case of rigid surface is sketched in the picture:
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where R(s) is the transfer function of the position controller. If we assume a PID position controller:

R(s) =
KDs

2 +KP s+KI

s

The partial compensator of such controller is:

C(s) =
1

KDs2 +KP s+KI

If we select a PI controller on the force error:

Rf (s) = kpf +
kif
s

the loop transfer function becomes:

Lf (s) =
skpf + kif

s2

Since the high frequency approximation of such transfer function is kpf/s we can set kpf = 30 (equal to
the required bandwidth. The zero of the controller can be set at a lower frequency range, for example
kif/kpf = 3, which yields kif = 90.

EXERCISE 3

1. Consider a wheel rolling without slipping on the horizontal plane, keeping the sagittal plane in the
vertical direction. Write the expression of the pure rolling constraint in the case of a steerable wheel,
explaining its physical meaning.

The pure rolling constraint has always the same form, independently of the fact that the wheel is fixed
or steerable, and is given by

ẋ sin θ − ẏ cos θ = 0

where x, y are the positions of the wheel contact point with respect to a fixed reference frame and θ
is the wheel sagital plane orientation.

This constraint means that the resultant of the velocities perpendicular to the direction of motion (the
intersection between the sagittal and the motion plane) is equal to zero.

2. Show that the previous kinematic constraint is a nonholonomic constraint.

Rewriting the constraint in Pfaffian form

[
sin θ − cos θ 0

] ẋẏ
θ̇

 = 0



we can show it is nonholonomic using the necessary and sufficient condition. If the constraint were
holonomic, we should find a function α (q) that satisfies the following equations
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Substituting the previous two expressions in equation (1) we get
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These two conditions can be satisfied at the same time if and only if α (q) = 0. We thus conclude that
the constraint is nonholonomic.

3. Consider now the dynamics of a steerable rolling wheel, describe the two most important modelling
approaches that can be used to represent the wheel-ground interaction (longitudinal and lateral) forces
stressing their differences and/or similarities.

There are two main approaches to model the wheel-ground interaction.

The first one is the empirical approach. In empirical tire models an experimental dataset including
lateral forces and corresponding slip angles is assumed to be available, and a class of mathematical
functions suitable to fit the dataset is selected. The solution of the fitting problem represents the tire
model. A classical example of fitting function is the Pacejka Magic Forrmula.

The second one is the physical approach. In this case the model that explains the force-slip relation
is derived using physical principles. An example of physical model is the brush or Fiala model.

4. Describe a linear model to represent the wheel lateral force.

A linear model, that holds for small slip angles, is Fx = Cxσx where Cx is the cornering stiffness and
σx the lateral slip.

EXERCISE 4



1. Consider a robot represented by a bicycle kinematic model. Describe an algorithm that allows to find
a trajectory (only the expressions of x(t) and y(t) are required), feasible with respect to the kinematic
model, to move the robot in an obstacle free environment from an initial state qi = [xi yi θi vi] at
ti = 0 to a final state qf = [xf yf θf vf ] at tf = t̄f (where the value of t̄f is known), exploiting the
flatness property.

We consider the following simplified bicycle model

ẋ = v cos θ ẏ = v sin θ θ̇ =
v

`
tanφ

we know it is flat with respect to the flat outputs z1 = x and z2 = y.
The initial and the final configurations allow to enforce 8 constraints, we can thus select for z1 and z2
the following two third order polynomials

z1(t) = a0 + a1t+ a2t
2 + a3t

3 z2(t) = b0 + b1t+ b2t
2 + b3t

3

characterized by 8 coefficients that can be determined imposing the initial and final conditions

z1 (0) = a0 = xi ż1 (0) = a1 = vi cos (θi)
z2 (0) = b0 = yi ż2 (0) = b1 = vi sin (θi)
z1 (t̄f ) = a0 + a1t̄f + a2t̄

2
f + a3t̄

3
f = xf ż1 (t̄f ) = a1 + 2a2t̄f + 3a3t̄

2
f = vf cos (θf )

z2 (t̄f ) = b0 + b1t̄f + b2t̄
2
f + b3t̄

3
f = yf ż2 (t̄f ) = b1 + 2b2t̄f + 3b3t̄

2
f = vf sin (θf )

Summarising, given an initial and a final configuration we can compute the ai and bi coefficients as

a0 = xi a1 = vi cos (θi) b0 = yi b1 = vi sin (θi)

and 
a2
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b2
b3

 =



t̄2f t̄3f 0 0

0 0 t̄2f t̄3f
2t̄f 3t̄2f 0 0

0 0 2t̄f 3t̄2f




−1 
xf − a0 − a1t̄f
yf − b0 − b1t̄f
vf cos (θf )− a1
vf sin (θf )− b1


Then the robot trajectory is given by

x(t) = a0 + a1t+ a2t
2 + a3t

3 y(t) = b0 + b1t+ b2t
2 + b3t

3

2. How can the same planning problem be solved, considering obstacles as well, using a sampling-based
planning algorithm?

A sampling-based planner, like for example RRT?, in its kinodynamic version allows to solve the
planning problem, considering obstacles and enforcing the satisfaction of the kinematic model.

This can be achieved introducing a steering function that compute an edge solving a TPBV problem
like the following one

min
a(t),φ(t),τ

∫ τ

0

(
1 +

[
φ (t) a (t)

]
R
[
φ (t) a (t)

]T)
dt

ẋ = v cos θ
ẏ = v sin θ

θ̇ =
v

`
tanφ

v̇ = a

x (0) = xi, y (0) = yi, θ (0) = θi, v (0) = vi
x (τ) = xf , y (τ) = yf , θ (τ) = θf , v (τ) = vf

where the cost function can be selected in accordance with the requirements of the considered planning
problem.



3. Consider the following bicycle kinematic model

ẋ = v cos θ ẏ = v sin θ θ̇ =
v

`
tanφ

and a point P related to the bicycle rear wheel contact point (x, y) by the following relations

xP = x+ ε cos θ yP = y + ε sin θ

Show how a feedback control law that linearises the bicycle model can be derived.

The feedback linearising control law derived for the unicycle kinematic model

v = vxP cos (θ) + vyP sin (θ)

ω =
vyP cos (θ)− vxP sin (θ)

ε

where vxP , vyP , are the velocities of point P , can be used for the bicycle kinematic model as well,

setting ω =
v

`
tanφ.

We thus obtain the following linearising control law

v = vxP cos (θ) + vyP sin (θ)

φ = arctan

(
`

ε

vyP cos (θ)− vxP sin (θ)

vxP cos (θ) + vyP sin (θ)

)

4. Explain why the control system designed in the previous step cannot be used to regulate the pose of
the robot.

Due to the feedback linearising controller the orientation of the robot becomes an hidden state, and
cannot be controlled any more. For this reason that control system cannot be used to control the
robot heading but only its position.


