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Motivations (I)

Besides the classical P/PI motion control architecture, there are other 
control architectures that can integrate or substitute the classical one.
Some of these architectures are part of commercial motion control systems.

We will concentrate on the following topics:
• notch filter
• torque disturbance observer
• state space design
• input shaping
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Notch filter (I)

A notch filter is a kind of band-stop filter whose aim is to stop a single 
frequency or, equivalently, to substitute a pair of complex conjugate poles, 
usually characterized by low damping, with another one characterized by 
higher damping.

A notch filter is characterized by the following transfer function

where 𝜔𝜔𝑛𝑛 is the natural frequency of
the poles we are cancelling out and
𝜉𝜉1, 𝜉𝜉2, with 𝜉𝜉2 > 𝜉𝜉1, are the damping
coefficients.

The filter can be also specified
giving the natural frequency and
the -3dB bandwidth.
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Notch filter (II)

In motion control systems, a notch filter can be used in the velocity loop to 
filter the output of the PI controller.

The notch filter can be used to cancel out an high frequency vibration (out of 
the control bandwidth) that causes audible noise.

We could also study if using the notch filter to cancel out the first natural 
frequency of the motion control system (joint flexibility) allows to increase 
control performance.
In this particular case the notch filter will have the following expression

where �𝜔𝜔𝑝𝑝 and 𝜉𝜉𝑝𝑝 are an estimate of the natural frequency and damping of 
the first resonance.
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Notch filter (III)

Using the filter to cancel out the first resonance frequency has, however, 
some drawbacks:
• in order to cancel out the first resonance frequency, an accurate estimate 

of the natural frequency of the pair of complex and conjugate poles is 
required

• the pair of low damping poles cancelled out by the notch filter (from the 
reference-output transfer function) are still eigenvalues of the closed-loop 
system and appear as poles in other transfer functions, e.g., the 
disturbance-output transfer function

• transforming an analog into a digital filter causes a distortion in the 
frequency response that could slightly change the frequency of the zeros 
in the digital realization. To overcome this issue we can use frequency 
pre-warping
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Notch filter – Simulation example (I)

Let’s see the results of the P/PI control, together with a notch filter in the 
velocity loop, on a simulation example.
The main characteristics of the servomechanism are  

For the P/PI control
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Notch filter – Simulation example (II)

The performance obtained with the notch filter is worse than the one 
achieved without the filter.
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Notch filter – Simulation example (III)

Damping of the closed-loop poles is not increased by the notch filter.
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Notch filter (IV)

We can adopt a different strategy, that should allow to improve the damping 
of the closed-loop poles.

In this case, the zeros of the notch filter are selected to match the pair of 
complex poles of the closed-loop system.
This strategy can achieve good performance, keeping the same tuning of 
the velocity regulator one would use without the filter.
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Notch filter – Simulation example (I)

Let’s see the results of the P/PI control, together with a notch filter on the 
velocity reference, on a simulation example.
The main characteristics of the servomechanism are  

For the P/PI control
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Notch filter – Simulation example (II)

There is a significant improvement in the load side response.
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Torque disturbance observer (I)

In many motion control applications there is a significant load torque 
disturbance, whose compensation can greatly improve the performance of 
the control system.
Torque Disturbance Observer (TDO) is an architecture that, acting in 
parallel to the motion control system, estimates and compensates the 
disturbance.

We start studying the problem of estimating and compensating a load 
disturbance acting on a general plant.
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Torque disturbance observer (II)

Let’s consider the following architecture, where
• 𝑃𝑃𝑛𝑛(𝑠𝑠) is a model of the plant 𝑃𝑃 𝑠𝑠
• 𝑄𝑄 𝑠𝑠 is a unitary gain low-pass filter that makes causal the transfer 

function 𝑄𝑄 𝑠𝑠 𝑃𝑃𝑛𝑛−1 𝑠𝑠
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Torque disturbance observer (III)

TDO produces the following disturbance estimate

and if 𝑃𝑃𝑛𝑛 𝑠𝑠 ≈ 𝑃𝑃 𝑠𝑠 we get

the harmonics of the disturbance inside the bandwidth of the filter are 
correctly estimated.
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Torque disturbance observer (IV)

Let’s consider now the transfer function from 𝑢𝑢∗ to 𝑦𝑦

if 𝑃𝑃𝑛𝑛 𝑠𝑠 ≈ 𝑃𝑃 𝑠𝑠 we get

We can thus conclude that the system (from 𝑢𝑢∗ to 𝑦𝑦) is virtually not affected 
by the disturbance, at least for the harmonics whose frequency lies in the 
bandwidth of 𝑄𝑄 𝑠𝑠 .
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Torque disturbance observer (V)

Consider now a servomechanism, and in particular the torque-velocity 
transfer function

and select for 𝑄𝑄 𝑠𝑠 a first order low-pass filter

The estimate of the torque disturbance is given by

this relation can be rewritten as
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Torque disturbance observer (VI)

The previous relation is used to devise the standard TDO architecture.
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Torque disturbance observer (VII)

Computing the transfer function from the disturbances and the reference 
signal to the output we get

where

is a high-pass filter.
From the transfer function it is
evident that the disturbance is very
well filtered, at least at low
frequencies.

Remember that the TDO has been
designed considering the rigid model
of the servomechanism.
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Torque disturbance observer (VIII)

What happens if we consider the elastic model?
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Torque disturbance observer (IX)

Let’s compute the system transfer functions considering 𝜏𝜏𝑙𝑙 = 0

where 

When 𝑇𝑇𝑓𝑓 → 0 we get
• The torque disturbance has 

been completely rejected
• The motor is controlled as it 

was independent of the load
• The load oscillates at the 

locked-frequency
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TDO – Simulation example (I) 21
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TDO – Simulation example (II)

The Torque Disturbance Observer interprets the load torque generated by 
the transmission as a disturbance to be rejected.
In the case of elastic transmissions, TDO does not achieve good 
performance.
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State-space control (I)

The techniques we have studied show that even controlling with the best 
possible performance the motor does not imply that load side control 
performance is acceptable.
Instead, there are situations in which we perfectly control the motor position 
but the load position is not controlled.

Pole placement should allow to take into account all the system states, thus 
ensuring good performance with respect to the motor and the load as well.

Let’s first introduce a state-space representation of the model of an elastic 
servomechanism

where
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State-space control (II)

The three state-space matrices are

where 𝐽𝐽𝑙𝑙𝑙𝑙 = 𝐽𝐽𝑙𝑙/𝑛𝑛2.

It can be easily checked that the system is completely controllable and 
completely observable.

Our aim is to design an observer based pole placement control law with 
reference tracking and feedforward action.
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State-space control (III) 25
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State-space control (IV)

The integral action allows to achieve zero steady-state error in the presence 
of a constant reference and of constant disturbances (e.g., Coulomb 
friction).
Introducing the integrator state 𝑥𝑥𝐼𝐼 we get

We can define a new state vector for the augmented system

and rewrite the system as

where
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State-space control (V)

A few remarks:
• thanks to the separation principle we can design the pole placement 

control law assuming full-state feedback, and solving separately the 
observer design problem

• in order to place the poles of the augmented system, 𝐅𝐅,𝐆𝐆𝑢𝑢 has to be 
completely controllable, i.e., 𝐀𝐀,𝐁𝐁 is completely controllable and the 
transfer function of the controlled system has no zeroes in 𝑠𝑠 = 0

As the last condition is verified, we can arbitrarily assign the closed-loop 
poles of the augmented system, as follows

and
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State-space control (VI)

A few remarks:
• ideally closed-loop poles can be arbitrarily selected, in practice 

robustness of the pole placement control law is closely related to the 
desired positions of the closed-loop poles

• as a measure of robustness we can take the condition number of the 
closed-loop system eigenvector matrix (Bauer-Fike theorem): the more 
orthogonal the eigenvectors are, the better the condition number is, and 
the more robust the closed-loop system is
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State-space control (VII)

Another way to select the gains of the control law is by minimizing the 
following cost function

that entails the solution of a Linear Quadratic optimal control problem.

You can try to follow this alternative way, computing matrix 𝐊𝐊𝑡𝑡𝑡𝑡𝑡𝑡 by way of 
the Matlab function lqr.

How to select matrix 𝐐𝐐?
You can use a trial-and-error procedure, or make reference to LQ optimal 
control literature.
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State-space control (VIII)

Let’s now consider the state observer, whose equations are

The dynamics of the error system are instead described by

A few remarks:
• the observer can be designed if (𝐀𝐀,𝐂𝐂) is completely observable (in this 

case the system is completely observable)
• the higher the absolute value of the eigenvalues of 𝐀𝐀 + 𝐋𝐋𝐂𝐂 is, the faster 

the error converges to zero, but the more sensitive the estimate is to 
measurement noise

• observer design, as pole placement, can be alternatively reformulated as 
the minimization of an integral cost function, using Kalman filter theory
(in this case, however, the model of the system should be stochastic, 
and disturbances become stochastic processes)

30



Prof. Luca BascettaProf. Luca Bascetta

State-space control (IX)

To improve the performance of the closed-loop system, we can introduce a 
feedforward action.

The transfer function of the system in the box is given by

where 𝐵𝐵𝑚𝑚 𝑠𝑠 is the numerator of the transfer function from 𝜏𝜏𝑚𝑚 to 𝑞𝑞𝑚𝑚.
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State-space control (X)

Define the following transfer function

where 𝐵𝐵𝑙𝑙 𝑠𝑠 (𝐵𝐵𝑚𝑚 𝑠𝑠 ) is the numerator of the transfer function from 𝜏𝜏𝑚𝑚 to 𝑞𝑞𝑙𝑙
(𝑞𝑞𝑚𝑚).

Assuming as reference model

the feedforward compensators can be selected as

In order to have causal filters, the relative degree of the reference model 
should be greater or equal to 3.
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State-space control – Experimental example (I) 33
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State-space control – Experimental example (II)

We would like to consider the following set-up:
• a servomechanism constituted by a brushless motor, an Harmonic Drive 

transmission, an inertial load
• a sensory system constituted by a motor side encoder and a load side 

accelerometer (from which load velocity is computed for validation 
purpose)

The aim of the experiment is to compare the performance of two different 
motion control systems:
• PID control (P/PI loop with velocity feedforward)
• LQG control (LQ optimal control and Kalman filter)

Performance is compared using a trapezoidal velocity profile at different 
velocity/acceleration values, comparing the load velocity behavior.
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State-space control – Experimental example (III)

Performing a rotation of 40° load side in 0.5 seconds with a maximum 
acceleration of 1200 rad/s2 (motor side).
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State-space control – Experimental example (IV)

Performing a rotation of 30° load side in 0.5 seconds with a maximum 
acceleration of 900 rad/s2 (motor side).
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State-space control – Experimental example (V)

Performing a rotation of 50° load side in 0.9 seconds with a maximum 
acceleration of 500 rad/s2 (motor side).

At low velocity a ripple arises that is probably due to disturbances in the 
velocity estimation.
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State-space control – Experimental example (V)

We conclude that LQG gives rise to better results than PID control, this 
better performance, however, entails a more complex design, 
implementation and debugging of the control system.
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Input shaping (I)

There are many examples of robots that are affected
not only by joint elasticity, but even by link flexibility.
This is not just the case of space robotic arms, 
even industrial arms can exhibit link flexibility.

To cope with either link or joint flexibility, we will
introduce a feedforward technique called input
shaping.
This technique modifies the input to the system
in such a way that the effect of the mechanical
resonances is canceled out.
In order to apply this methodology we need to
know the natural frequency and damping of
the pair of complex and conjugate poles.
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Input shaping (II)

Let’s consider a dynamical system characterized by a pair of complex poles

The response of the system to an impulse of amplitude 𝑘𝑘𝑖𝑖 at time 𝑡𝑡𝑖𝑖 is given 
by

where

and the period of oscillations is given by
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Input shaping (III)

Let’s consider now the response of the system to two impulses, at 𝑡𝑡1 and 𝑡𝑡2
(𝑡𝑡2 > 𝑡𝑡1). The response of the system is the sum of the two impulse 
responses

Can we select the amplitudes and times of the impulses in such a way that 
the output is zero for 𝑡𝑡 > 𝑡𝑡2?
The two sinusoidal responses can be added using the following relation

where

In order to have zero output we should thus impose
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Input shaping (IV)

Applying the previous relations we obtain the following conditions

that can be solved with respect to 𝑘𝑘1, 𝑘𝑘2, 𝑡𝑡1 and 𝑡𝑡2.
As we have two equations and four unknowns, we can set 𝑡𝑡1 = 0 and 
introduce a normalization condition on the amplitudes
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Input shaping (V)

Solving the two conditions we get

Note that both impulses are
positive, and the second one
is delayed of half a period.

43



Prof. Luca BascettaProf. Luca Bascetta

Input shaping (VI)

What happens if 𝜔𝜔𝑛𝑛 and 𝜉𝜉 are not perfectly known?
Assume that there is an error of 10% on 𝜔𝜔𝑛𝑛 and of 20% on 𝜉𝜉.

In order to improve the robustness with respect to errors in 𝜔𝜔𝑛𝑛 and 𝜉𝜉 we 
have to introduce more impulses.
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Input shaping (VII)

Let’s consider now the response of the system to three impulses, at 𝑡𝑡1, 𝑡𝑡2
and 𝑡𝑡3 (t3 > 𝑡𝑡2 > 𝑡𝑡1). The response of the system is the sum of the three 
impulse responses

The trigonometric relation can be extended to more than two impulses as 
follows

As a consequence, in order to have the output equal to zero for 𝑡𝑡 > 𝑡𝑡3 we 
impose the following conditions
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Input shaping (VIII) 46

As we have two equations and six unknowns, we can add a new constraint 
imposing that even the output derivative is zero for 𝑡𝑡 > 𝑡𝑡3.

In this way we obtain

and we have four equations and six unknowns.
We can finally set 𝑡𝑡1 = 0 and introduce a normalization condition on the 
amplitudes
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Input shaping (IX)

Solving the four conditions we get

Note that all impulses are
positive. The second impulse
is delayed of half a period,
the third one of a period.
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Input shaping (X)

What happens if 𝜔𝜔𝑛𝑛 and 𝜉𝜉 are not perfectly known?
Assume that there is an error of 10% on 𝜔𝜔𝑛𝑛 and of 20% on 𝜉𝜉.

Now we have a good damping of oscillations even in the presence of 
parameter errors.
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Input shaping (XI)

We would now generalize the previous results in order to devise a method 
to modify the input of a resonance system in such a way that output 
oscillations are cancelled out.

Assuming that 𝑢𝑢 𝑡𝑡 is the system input and 𝑤𝑤 𝑡𝑡 the impulse train

ℎ 𝑡𝑡 is the response of the system to the impulse train

Remember that we define convolution between two signals 𝑢𝑢 𝑡𝑡 and ℎ 𝑡𝑡
the following operation

whose Laplace transform is given by
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Input shaping (XII)

Convolving the original input 𝑢𝑢 𝑡𝑡 with signal ℎ 𝑡𝑡 we obtain a signal 𝑦𝑦 𝑡𝑡
that has no oscillations for 𝑡𝑡 > Δ𝑇𝑇.
In fact, we have

This relation is equivalent to filter the input signal 𝑢𝑢 𝑡𝑡 with a system 
described by the following block diagram.

This method can be extended
to systems with more than one
resonance mode.
Adaptive versions exist as well.
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Input shaping – Example (I)

Let’s apply input shaping to an elastic servomechanism characterized by 
𝜔𝜔𝑛𝑛 = 1 and 𝜉𝜉 = 0.05.

Assuming that the system input is a rectangular
torque profile, we can compute coefficients 𝑘𝑘𝑖𝑖
and time delays.
We obtain the following modified input
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Input shaping – Example (II)

Let’s simulate the response of the system to the rectangular torque profile, 
focusing on the load side velocity.
Assume that there is an error of 10% on 𝜔𝜔𝑛𝑛 and of 20% on 𝜉𝜉.

Though the uncertainty on
nominal frequency and
damping, the oscillations
have been almost completely
cancelled out.
There is a delay in the velocity
that can be compensated
shifting the reference signal.
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