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Exercise 1 - Car pulling many trailers

Consider again the car-trailer system, assuming now that the car is followed
by N trailers.
Write the kinematic model of the system.
The car position (x, y) is represented by the rear wheel contact point, the
position of the i-th trailer (xti , yti), instead, is represented by the trailer wheel
contact point.

Solution

Recall the kinematic model of the car pulling a single trailer (see Exercise 1
on Kinematics) given as
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and recall that θ0 is the orientation of the car and v is the linear velocity of
its rear wheel.
Now let us consider two arbitrary consecutive trailers, i and i − 1. Making
reference to the figure, it is possible to deduce that

α = θi−1 − θi
vi = vi−1 cos(α)

= vi−1 cos(θi−1 − θi) (1)

for all i ≥ 1 and where v0 = v.
Furthermore, from the definition of ICR, the vehicle is rotating about this
point with velocity θ̇i. Then we can obtain the following relation between the
linear velocity, vi−1, of the point of contact of wheel i − 1 and the angular
velocity θ̇i

θ̇i
di

sin(θi−1 − θi)
= vi−1

Then, the angular velocity is

θ̇i = vi−1
sin(θi−1 − θi)

di
(2)

Taking (1) into consideration, (2) can be rewritten as

θ̇i =
1

di
v

i−1∏
j=1

(cos(θj−1 − θj)) sin(θi−1 − θi)
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Finally, the kinematic model of a car pulling N trailers can be written as
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Note that, we could also achieve the same result by writing the pure rolling constraints.
For a generic i-th trailer, the pure rolling constraint is written as

ẋi sin(θi)− ẏi cos(θi) = 0, ∀i = 0, 1, . . . , N (3)

where

xi = x−
i∑

j=1

dj cos(θj) yi = y −
i∑

j=1

dj sin(θj)

The time derivatives of xi and yi are then calculated as

ẋi = ẋ+

i∑
j=1

dj sin(θj)θ̇j ẏi = ẏ −
i∑

j=1

dj cos(θj)θ̇j (4)

Plugging (4) into (3) we can obtain the following constraint for i-th trailer

ẋ sin(θi)− ẏ cos(θi) +

i∑
j=1

dj cos(θi − θj)θ̇j = 0, ∀i = 0, 1, . . . , N
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Exercise 2 - Car-trailer system, with steering trailer

Write the kinematic model of a car-trailer system. The trailer is provided with
steerable wheel.
The car position (x, y) is represented by the rear wheel contact point, the
trailer position (xt, yt), instead, is represented by the trailer wheel contact
point.

Solution

The car-trailer robot configuration is represented by vector

q = [x, y, θ, θt, φ, φt]
T

and we can write the pure rolling constraints referred to each wheel of the car
and of the trailer as follows

ẋ1 sin (θ + φ)− ẏ1 cos (θ + φ) = 0 (5)

ẋ sin θ − ẏ cos θ = 0 (6)

ẋt sin (θt + φt)− ẏt cos (θt + φt) = 0 (7)

where (x1, y1) is the position of the car front wheel contact point.
We can relate the position of the front wheel contact point and of the trailer wheel contact point to (x, y) through
a rigidity constraint

x1 = x+ ` cos θ

y1 = y + ` sin θ

and

xt = x− d cos θt

yt = y − d sin θt

Differentiating the two relations with respect to time we obtain

ẋ1 = ẋ− `θ̇ sin θ

ẏ1 = ẏ + `θ̇ cos θ

and

ẋt = ẋ+ dθ̇t sin θt

ẏt = ẏ − dθ̇t cos θt

Substituting these relations in (5) and (7) we obtain

ẋ sin (θ + φ)− ẏ cos (θ + φ)− `θ̇ cosφ = 0

ẋ sin θ − ẏ cos θ = 0

ẋ sin (θt + φt)− ẏ cos (θt + φt)− dθ̇t cosφt = 0

The three constraints that describe the car-trailer can be written in Pfaffian form as

AT (q) q̇ =
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sin θ − cos θ 0 0 0
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Finally, the kinematic model for the car-trailer is
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where v is the velocity of the rear wheel of the car, and ω, ωt are the steering velocities for the front wheel of the
car and the trailer wheel, respectively.
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Exercise 3 - Problem 11.7 from Robotics textbook

For a generic configuration of a bicycle mobile robot, determine the Cartesian position of the instantaneous center
of rotation, and derive the expression of the angular velocity of the body as a function of the robot configuration q
and of the modulus of the velocity of rear wheel center. In the particular case of the rear-wheel drive bicycle, show
that such expression is consistent with the evolution of θ predicted by the kinematic model. Moreover, compute
the velocity vP of a generic point P on the robot chassis.

Solution

The bicycle robot configuration is represented by vector

q = [x, y, θ, φ]
T

The ICR is the intersection between the null velocity lines of the front and
rear wheels, as shown in the picture. Moreover, straightforward geometry
considerations allow to compute the position of ICR (make reference to the
figure) with respect to the x, y frame, as follows

xICR = x− `

tanφ
sin θ yICR = y +

`

tanφ
cos θ

According to the definition of ICR the vehicle is rotating around this point
at velocity θ̇. As a consequence, if v is the linear velocity of the rear wheel
contact point, the following relation holds

θ̇
`

tanφ
= v

The angular velocity of the body is thus

θ̇ = v
tanφ

`

and it is straightforward to verify that, in the particular case of the rear-wheel
drive bicycle, such expression is consistent with the evolution of θ predicted by the kinematic model.
A generic point P on the robot chassis rotates at a velocity θ̇ around the ICR. Its linear velocity is thus the product
of θ̇ by the distance of P from the ICR.
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Exercise 4 - Dynamic model of a Segway

Write the dynamic model of the Segway shown in the picture using the La-
grangian formalism. Note that, the reference frame shown in the picture is a
fixed reference frame.
The Segway is described by the following parameters:

• mw, Iw, are the mass and moment of inertia of the wheel, respectively;

• mr, Ir, are the mass and moment of inertia of the rod, respectively;

• (xr, yr), are the coordinates of the rod center of gravity;

• R, is the radius of the wheel;

• `, is the distance of the rod center of gravity from the center of the wheel.

Solution

First of all, the Segway motion is described by the position of the wheel center
and by the angular position of the wheel and the rod. For this reason the configuration vector is q = [x, φ, θ].
The kinetic energy of the wheel and the rod can be written as

Tw =
1

2
mwẋ

2 +
1

2
Iwφ̇

2 (8)

Tr =
1

2
mrẋ

2
r +

1

2
mrẏ

2
r +

1

2
Ir θ̇

2 (9)

The position of the rod center of gravity can be expressed as a function of the wheel center as

xr = x− ` sin θ

yr = ` cos θ

and differentiation with respect to time

ẋr = ẋ− `θ̇ cos θ

ẏr = −`θ̇ sin θ

Substituting the previous relations in (9), we obtain

Tr =
1

2
mr

(
ẋ− `θ̇ cos θ

)2
+

1

2
mr

(
`θ̇ sin θ

)2
+

1

2
Ir θ̇

2

The potential energy of the rod can be written as

Vr = mrg` cos θ

and the Lagrangian of the system is given by

L = Tw + Tr − Vr

Following the Lagrangian formalism the equations of motion of the Segway are given by

d

dt

(
∂L

∂q̇

)T

−
(
∂L

∂q

)T

= S(q)τ +A(q)λ

where τ is the torque applied to the wheel, λ a vector of Lagrange multipliers, S(q) a matrix that maps the input
into generalized forces performing work on q, and A(q) is the matrix of kinematic constraints.
Applying now the partial and total derivatives to the Lagrangian function we obtain

d

dt

(
∂L

∂ẋ

)
=

d

dt

(
(mw +mr) ẋ− `θ̇ cos θ

)
= (mw +mr) ẍ−mr`θ̈ cos θ +mr`θ̇

2 sin θ

d

dt

(
∂L

∂φ̇

)
=

d

dt

(
Iwφ̇

)
= Iwφ̈

d

dt

(
∂L

∂θ̇

)
=

d

dt

(
−mr`ẋ cos θ +mr`

2θ̇ + Ir θ̇
)

= mr`
(
ẋθ̇ sin θ − ẍ cos θ

)
+
(
Ir +mr`

2
)
θ̈
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and (
∂L

∂x

)
= 0(

∂L

∂φ

)
= 0(

∂L

∂θ

)
= mr` sin θ

(
ẋθ̇ + g

)
Collecting now the addenda related to q̇, q we can rewrite the motion model as mw +mr 0 −mr` cos θ

0 Iw 0
−mr` cos θ 0 Ir +mr`

2


︸ ︷︷ ︸

B(q)

q̈ +

mr`θ̇
2 sin θ
0

−mrg` sin θ


︸ ︷︷ ︸

n(q,q̇)

= S(q)τ +A(q)λ (10)

We now have to analyse the kinematic model of the Segway in order to derive matrix A(q) and S(q).
The wheel is subject to a no slip constraint ẋ+Rφ̇ = 0, that in Pfaffian form can be rewritten as

A(q)T q̇ =
[
1 R 0

] ẋφ̇
θ̇

 = 0

Computing a basis of the null space of A(q)T , we can write the kinematic model asẋφ̇
θ̇

 =

−R1
0

u1 +

0
0
1

u2
where u1 = φ̇ and u2 = θ̇, and

G (q) =

−R 0
1 0
0 1


Multiplying equation (10) by G (q) we obtain

M (q) v̇ +m (q, v) = GT (q)S (q) τ

where

M (q) = GT (q)B (q)G (q)

=

[
(mw +mr)R2 + Iw mrR` cos θ

mrR` cos θ mr`
2 + Ir

]
and

m (q, v) = GT (q)B (q) Ġ (q) v +GT (q)n (q, G (q) v)

=

[
−mrR`θ̇

2 sin θ
−mrg` sin θ

]
where v =

[
φ̇, θ̇

]T
.

Considering that τ is the torque applied to the wheel, matrix S (q) can be defined as S (q) = [0, 1, −1]
T

. As a
consequence

GT (q)S (q) =

[
−R 1 0
0 0 1

] 0
1
−1

 =

[
1
−1

]
Summarising, the dynamic and kinematic model of the Segway are given by[

(mw +mr)R2 + Iw mrR` cos θ
mrR` cos θ mr`

2 + Ir

] [
φ̈

θ̈

]
+

[
−mrR`θ̇

2 sin θ
−mrg` sin θ

]
=

[
τ
−τ

]
and ẋφ̇

θ̇

 =

−R 0
1 0
0 1

[φ̇
θ̇

]
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Exercise 5 - Tire-ground interaction model

The longitudinal force in the Fiala model is given by the following expression

Fx =

 Cxσx

(
−1 +

|σx|
σxsl

−
σ2
x

3σ2
xsl

)
|σx| < σxsl

−µFzsign (σx) |σx| ≥ σxsl

Answer to the following questions:

1. Consider a force-slip relation for the longitudinal force that is linear up to the maximum available force (given
by friction), and then saturates to the friction force. Write the expression of the longitudinal force.

2. During a curve a wheel is subject to a maximum longitudinal force F̄x = 0.4 F̄z, and a maximum lateral force
F̄y = 0.3 F̄z, where F̄z is the vertical load on the wheel.
Find the value of the friction coefficient µ.
Keeping constant the longitudinal force and doubling the vertical load, what is the maximum value of the
lateral force?

Solution

1. The longitudinal force given by the discontinuous model can be represented using the following expression

Fx =


−Cxσx |σx| < µFz

Cx

−µFzsign (σx) |σx| ≥ µFz
Cx

where Cx and σx are the cornering stiffness and slip angle, respectively, µ is the friction coefficient, and Fz

the normal load on the wheel.

2. Using the friction circle constraint we get√
0.16F̄ 2

z + 0.9F̄ 2
z = µF̄z

and solving for µ

µ = 0.5

Doubling the vertical load we get√
0.16F̄ 2

z + α2F̄ 2
z ≤ 2 · 0.5F̄z = F̄z

and solving for α

α2 ≤ 1− 0.16 = 0.84

The maximum lateral force becomes approximately 0.92 F̄z.
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