Automatic Control Exercise 1: Time domain analysis of dynamical systems

Prof. Luca Bascetta

Exercise 1

Consider the following continuous time nonlinear and time invariant dynamical system

$$\dot{x}_1(t) = x_2^2(t) + \alpha u(t)
\dot{x}_2(t) = x_1(t)x_2(t) + u(t)
y(t) = \beta x_1(t)$$

and assume that $u(t) = \bar{u} = 1$.

Find α and β in such a way that at the equilibrium

$$x_2(t) = \bar{x}_2 = 2$$
$$y(t) = \bar{y} = 8$$

and compute the value of \bar{x}_1 .

Find another state equilibrium related to the same values of α and β .

Solution

The equilibrium equations are

$$\bar{x}_2^2 + \alpha \bar{u} = 0$$
$$\bar{x}_1 \bar{x}_2 + \bar{u} = 0$$
$$\bar{y} = \beta \bar{x}_1$$

Assuming $\bar{x}_2 = 2$, $\bar{y} = 8$ and $\bar{u} = 1$ we obtain

$$\alpha = -\bar{x}_2^2 = -4$$

$$2\bar{x}_1 = -1 \Rightarrow \bar{x}_1 = -\frac{1}{2}$$

$$\beta = \frac{\bar{y}}{\bar{x}_1} = 8 \cdot (-2) = -16$$

We can now determine the other equilibrium corresponding to $\alpha=-4$ and $\beta=-16$

$$egin{aligned} ar{x}_2^2 &= 4 \\ ar{x}_1 ar{x}_2 &= -1 \\ ar{y} &= -16 ar{x}_1 \end{aligned}$$

from this equations it follows

$$\bar{x}_2 = -2$$

$$\bar{x}_1 = \frac{1}{2}$$

$$\bar{y} = -8$$

Exercise 2

Consider the following continuous time linear and time invariant dynamical system

$$\dot{x}_1(t) = -2x_1(t) + \alpha x_2(t) + u(t)$$

$$\dot{x}_2(t) = \alpha x_1(t) - 2x_2(t)$$

$$y(t) = x_1(t)$$

Find α for which the system is asymptotically stable.

For $\alpha = 0$ determine the value of the initial condition x(0) in such a way that the output response to $u(t) = e^{at}$ is y(t) = ku(t) where k is a constant that has to be determined.

Solution

The system state matrix is

$$\begin{bmatrix} -2 & \alpha \\ \alpha & -2 \end{bmatrix}$$

whose characteristic polynomial is

$$\varphi(\lambda) = \lambda^2 + 4\lambda + (4 - \alpha^2)$$

Thanks to the necessary condition, that for second order systems is sufficient as well, the system is asymptotically stable if

$$4 - \alpha^2 > 0 \quad \Rightarrow \quad -2 < \alpha < 2$$

For $\alpha = 0$ the system equations become

$$\dot{x}_1(t) = -2x_1(t) + u(t)$$

$$\dot{x}_2(t) = -2x_2(t)$$

$$y(t) = x_1(t)$$

It is straightforward to notice that the system response does not depend on the second state variable. In order to compute the output we can consider the reduced system

$$\dot{x}_1(t) = -2x_1(t) + u(t)$$

$$y(t) = x_1(t)$$

The output response is given by

$$y(t) = x_1(0)e^{-2t} + \int_0^t e^{-2(t-\tau)}e^{a\tau}d\tau = x_1(0)e^{-2t} + e^{-2t}\int_0^t e^{(a+2)\tau}d\tau = x_1(0)e^{-2t} + e^{-2t}\left[\frac{e^{(a+2)\tau}}{a+2}\right]_0^t$$
$$= e^{-2t}\left[x_1(0) + \frac{e^{(a+2)t}}{a+2} - \frac{1}{a+2}\right]$$

Assuming $x_1(0) = \frac{1}{a+2}$ and $k = \frac{1}{a+2}$ we obtain

$$y(t) = \frac{1}{a+2}e^{at} = ku(t)$$

Exercise 3

Given the following system of tanks

where $A_1 = A_3 = 0.5$, $A_2 = 1$, and $k_1 = k_2 = k_3 = 1$.

Find the equations of the dynamical system that describes the system of tanks.

Determine the state and output equilibria corresponding to $u(t) = \bar{u} = 0$.

Is the system stable, unstable or asymptotically stable?

Solution

The dynamical system that describes the system of tanks is given by

$$A_1\dot{h}_1(t) = -k_1h_1(t)$$

$$A_2\dot{h}_2(t) = u(t) + k_1h_1(t) - k_3h_2(t) - k_2h_2(t)$$

$$A_3\dot{h}_3(t) = k_2h_2(t)$$

$$y(t) = k_3h_2(t)$$

and substituting the values of the parameters

$$\begin{aligned} \dot{x}_1(t) &= -2x_1(t) \\ \dot{x}_2(t) &= x_1(t) - 2x_2(t) + u(t) \\ \dot{x}_3(t) &= 2x_2(t) \\ y(t) &= x_2(t) \end{aligned}$$

The equilibrium equations are

$$0 = -2\bar{x}_1(t)$$

$$0 = \bar{x}_1(t) - 2\bar{x}_2(t)$$

$$0 = 2\bar{x}_2(t)$$

$$\bar{y}(t) = \bar{x}_2(t)$$

The equilibrium point is thus characterized by $\bar{y} = \bar{x}_1 = \bar{x}_2 = 0, \forall \bar{x}_3$.

The state matrix is

$$\begin{bmatrix} -2 & 0 & 0 \\ 1 & -2 & 0 \\ 0 & 2 & 0 \end{bmatrix}$$

whose eigenvalues are -2, -2 and 0. The system is thus stable.

Exercise 4

Consider the following continuous time nonlinear and time invariant dynamical system

$$\dot{x}(t) = x^{2}(t) - u(t)x(t) - 2u(t)$$

$$y(t) = x^{3}(t) + u^{3}(t)$$

and assume that $u(t) = \bar{u} = 1$.

Find the state and output equilibria and, for each of them, the linearized system.

Analyse the stability of the linearized systems and compute the response $\delta y(t)$ to an input $\delta u(t) = 0.1\cos(2t)$ for $t \ge 0$.

Solution

The equilibrium equations are

$$0 = \bar{x}^2 - \bar{u}\bar{x} - 2\bar{u}$$
$$\bar{y} = \bar{x}^3 + \bar{u}^3$$

and considering $\bar{u} = 1$

$$0 = \bar{x}^2 - \bar{x} - 2$$
$$\bar{y} = \bar{x}^3 + 1$$

from which we obtain

$$\bar{x} = 2$$
 $\bar{y} = 9$

and

$$\bar{x} = -1$$
 $\bar{y} = 0$

The linearized system computed for the general equilibrium (\bar{x}, \bar{u}) has the following expression

$$\delta \dot{x}(t) = (2\bar{x} - \bar{u})\delta x(t) - (\bar{x} + 2)\delta u(t)$$

$$\delta y(t) = 3\bar{x}^2 \delta x(t) + 3\bar{u}^2 \delta u(t)$$

Considering now the first equilibrium we obtain

$$\delta \dot{x}(t) = 3\delta x(t) - 4\delta u(t)$$

$$\delta y(t) = 12\delta x(t) + 3\delta u(t)$$

and for the second one

$$\delta \dot{x}(t) = -3\delta x(t) - \delta u(t)$$

$$\delta y(t) = 3\delta x(t) + 3\delta u(t)$$

The first linearized system, and the related equilibrium point, are unstable; the second linearized system, and the related equilibrium point, are asymptotically stable.

Consider now the state trajectory of the first linearized system for $\delta u(t) = 0.1\cos(2t)$

$$\delta x(t) = e^{3t} \delta x_0 + \int_0^t e^{3(t-\tau)} (-4) 0.1 \cos(2\tau) d\tau$$

and assuming $x(0) = \bar{x}$, i.e. $\delta x_0 = 0$, we obtain¹

$$\delta x(t) = -0.4e^{3t} \int_0^t e^{-3\tau} \cos(2\tau) d\tau = -\frac{4}{130} \left(2\sin(2\tau) - 3\cos(2\tau) \right)$$

Finally, the state trajectory of the second linearized system for $\delta u(t) = 0.1\cos(2t)$ is given by

$$\delta x(t) = \int_0^t e^{-3(t-\tau)} (-1) 0.1 \cos(2\tau) \mathrm{d}\tau = -0.1 e^{-3t} \int_0^t e^{3\tau} \cos(2\tau) \mathrm{d}\tau = -\frac{1}{130} \left(2\sin(2\tau) + 3\cos(2\tau) \right)$$

The output trajectories of the two linearized system are then given by

$$\delta y(t) = 12\delta x(t) + 3\delta u(t) = \frac{3}{65} \left(\frac{87}{2} \cos(2\tau) - 16\sin(2\tau) \right)$$

and

$$\delta y(t) = 3\delta x(t) + 3\delta u(t) = \frac{3}{13} \left(\cos(2\tau) - \frac{1}{5} \sin(2\tau) \right)$$

Exercise 5

Find the values α and β for which the system with characteristic polynomial

$$\varphi(s) = s^3 + \alpha s^2 + \beta s + 1$$

is asymptotically stable.

Plot the stability region in the (α, β) plain.

$$\int e^{-3\tau} \cos(2\tau) d\tau = \frac{1}{2} e^{3\tau} \sin(2\tau) - \frac{3}{2} \int e^{3\tau} \sin(2\tau) d\tau = \frac{1}{2} e^{3\tau} \sin(2\tau) - \frac{3}{2} \left[-\frac{1}{2} e^{3\tau} \cos(2\tau) + \frac{3}{2} \int e^{3\tau} \cos(2\tau) d\tau \right]$$

and thus

$$\int e^{3\tau} \cos(2\tau) d\tau = \frac{1}{13} e^{3\tau} \left(2\sin(2\tau) + 3\cos(2\tau) \right)$$

²Note that, using integration by parts one obtains

$$\int e^{3\tau} \cos(2\tau) d\tau = \frac{1}{2} e^{-3\tau} \sin(2\tau) + \frac{3}{2} \int e^{-3\tau} \sin(2\tau) d\tau = \frac{1}{2} e^{-3\tau} \sin(2\tau) + \frac{3}{2} \left[-\frac{1}{2} e^{-3\tau} \cos(2\tau) - \frac{3}{2} \int e^{-3\tau} \cos(2\tau) d\tau \right]$$

and thus

$$\int e^{-3\tau} \cos(2\tau) d\tau = \frac{1}{13} e^{-3\tau} \left(2\sin(2\tau) - 3\cos(2\tau) \right)$$

¹Note that, using integration by parts one obtains

Solution

We can build the Routh table

$$\begin{array}{cccc}
1 & \beta & 0 \\
\alpha & 1 & 0
\end{array}$$

$$\frac{\alpha\beta - 1}{\alpha} & 0$$

Imposing that all the elements in the first column are positive (like the first and the last one) we obtain

$$\alpha > 0$$
$$\alpha \beta - 1 > 0$$

and thus

$$\alpha > 0$$
$$\beta > \frac{1}{\alpha}$$

The stability region in the (α, β) plain is shown in Fig. 1.

Figure 1: Stability region in the (α, β) plain.

Exercise 6

Find the values α and β for which the system with characteristic polynomial

$$\varphi(s) = s^3 + (\beta + 1)s^2 + (\beta + 1)s + (\alpha - 2\beta)$$

is asymptotically stable.

Plot the stability region in the (α, β) plain.

Solution

From the necessary condition we can derive the following constraints

$$\beta + 1 > 0$$
$$\alpha - 2\beta > 0$$

or, equivalently

$$\beta > -1$$

$$\beta < \frac{\alpha}{2}$$

Fig. 2 shows these constraints in the (α, β) plain.

Figure 2: Stability region in the (α, β) plain.

We can now build the Routh table

$$\begin{array}{ccc}
1 & \beta + 1 \\
\beta + 1 & \alpha - 2\beta \\
\frac{\beta^2 + 4\beta + 1 - \alpha}{\beta + 1} & \alpha - 2\beta
\end{array}$$

Imposing that all the elements in the first column are positive (like the first one) we obtain

$$\beta + 1 > 0$$

$$\beta^2 + 4\beta + 1 - \alpha > 0$$

$$\alpha - 2\beta > 0$$

and thus

$$\beta > -1$$

$$\beta < \frac{\alpha}{2}$$

$$\beta^2 + 4\beta + 1 > \alpha$$

The stability region in the (α, β) plain is shown in Fig. 3.

Figure 3: Stability region in the (α, β) plain.