
Automatic Control
Exercise 1: Time domain analysis of dynamical systems

Prof. Luca Bascetta

Exercise 1

Consider the following continuous time nonlinear and time invariant dynamical system

ẋ1(t) = x22(t) + αu(t)

ẋ2(t) = x1(t)x2(t) + u(t)

y(t) = βx1(t)

and assume that u(t) = ū = 1.
Find α and β in such a way that at the equilibrium

x2(t) = x̄2 = 2

y(t) = ȳ = 8

and compute the value of x̄1.
Find another state equilibrium related to the same values of α and β.

Solution

The equilibrium equations are

x̄22 + αū = 0

x̄1x̄2 + ū = 0

ȳ = βx̄1

Assuming x̄2 = 2, ȳ = 8 and ū = 1 we obtain

α = −x̄22 = −4

2x̄1 = −1⇒ x̄1 = −1

2

β =
ȳ

x̄1
= 8 · (−2) = −16

We can now determine the other equilibrium corresponding to α = −4 and β = −16

x̄22 = 4

x̄1x̄2 = −1

ȳ = −16x̄1

from this equations it follows

x̄2 = −2

x̄1 =
1

2
ȳ = −8

Exercise 2

Consider the following continuous time linear and time invariant dynamical system

ẋ1(t) = −2x1(t) + αx2(t) + u(t)

ẋ2(t) = αx1(t)− 2x2(t)

y(t) = x1(t)

Find α for which the system is asymptotically stable.
For α = 0 determine the value of the initial condition x(0) in such a way that the output response to u(t) = eat is
y(t) = ku(t) where k is a constant that has to be determined.
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Solution

The system state matrix is[
−2 α
α −2

]
whose characteristic polynomial is

ϕ(λ) = λ2 + 4λ+ (4− α2)

Thanks to the necessary condition, that for second order systems is sufficient as well, the system is asymptotically
stable if

4− α2 > 0 ⇒ −2 < α < 2

For α = 0 the system equations become

ẋ1(t) = −2x1(t) + u(t)

ẋ2(t) = −2x2(t)

y(t) = x1(t)

It is straightforward to notice that the system response does not depend on the second state variable. In order to
compute the output we can consider the reduced system

ẋ1(t) = −2x1(t) + u(t)

y(t) = x1(t)

The output response is given by

y(t) = x1(0)e−2t +

∫ t

0

e−2(t−τ)eaτdτ = x1(0)e−2t + e−2t

∫ t

0

e(a+2)τdτ = x1(0)e−2t + e−2t

[
e(a+2)τ

a+ 2

]t
0

= e−2t

[
x1(0) +

e(a+2)t

a+ 2
− 1

a+ 2

]
Assuming x1(0) = 1

a+2 and k = 1
a+2 we obtain

y(t) =
1

a+ 2
eat = ku(t)

Exercise 3

Given the following system of tanks

where A1 = A3 = 0.5, A2 = 1, and k1 = k2 = k3 = 1.
Find the equations of the dynamical system that describes the system of tanks.
Determine the state and output equilibria corresponding to u(t) = ū = 0.
Is the system stable, unstable or asymptotically stable?
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Solution

The dynamical system that describes the system of tanks is given by

A1ḣ1(t) = −k1h1(t)

A2ḣ2(t) = u(t) + k1h1(t)− k3h2(t)− k2h2(t)

A3ḣ3(t) = k2h2(t)

y(t) = k3h2(t)

and substituting the values of the parameters

ẋ1(t) = −2x1(t)

ẋ2(t) = x1(t)− 2x2(t) + u(t)

ẋ3(t) = 2x2(t)

y(t) = x2(t)

The equilibrium equations are

0 = −2x̄1(t)

0 = x̄1(t)− 2x̄2(t)

0 = 2x̄2(t)

ȳ(t) = x̄2(t)

The equilibrium point is thus characterized by ȳ = x̄1 = x̄2 = 0, ∀x̄3.
The state matrix is−2 0 0

1 −2 0
0 2 0


whose eigenvalues are -2, -2 and 0. The system is thus stable.

Exercise 4

Consider the following continuous time nonlinear and time invariant dynamical system

ẋ(t) = x2(t)− u(t)x(t)− 2u(t)

y(t) = x3(t) + u3(t)

and assume that u(t) = ū = 1.
Find the state and output equilibria and, for each of them, the linearized system.
Analyse the stability of the linearized systems and compute the response δy(t) to an input δu(t) = 0.1 cos(2t) for
t ≥ 0.

Solution

The equilibrium equations are

0 = x̄2 − ūx̄− 2ū

ȳ = x̄3 + ū3

and considering ū = 1

0 = x̄2 − x̄− 2

ȳ = x̄3 + 1

from which we obtain

x̄ = 2 ȳ = 9

and

x̄ = −1 ȳ = 0
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The linearized system computed for the general equilibrium (x̄, ū) has the following expression

δẋ(t) = (2x̄− ū)δx(t)− (x̄+ 2)δu(t)

δy(t) = 3x̄2δx(t) + 3ū2δu(t)

Considering now the first equilibrium we obtain

δẋ(t) = 3δx(t)− 4δu(t)

δy(t) = 12δx(t) + 3δu(t)

and for the second one

δẋ(t) = −3δx(t)− δu(t)

δy(t) = 3δx(t) + 3δu(t)

The first linearized system, and the related equilibrium point, are unstable; the second linearized system, and the
related equilibrium point, are asymptotically stable.
Consider now the state trajectory of the first linearized system for δu(t) = 0.1 cos(2t)

δx(t) = e3tδx0 +

∫ t

0

e3(t−τ)(−4)0.1 cos(2τ)dτ

and assuming x(0) = x̄, i.e. δx0 = 0, we obtain1

δx(t) = −0.4e3t
∫ t

0

e−3τ cos(2τ)dτ = − 4

130
(2 sin(2τ)− 3 cos(2τ))

Finally, the state trajectory of the second linearized system for δu(t) = 0.1 cos(2t) is given by2

δx(t) =

∫ t

0

e−3(t−τ)(−1)0.1 cos(2τ)dτ = −0.1e−3t

∫ t

0

e3τ cos(2τ)dτ = − 1

130
(2 sin(2τ) + 3 cos(2τ))

The output trajectories of the two linearized system are then given by

δy(t) = 12δx(t) + 3δu(t) =
3

65

(
87

2
cos(2τ)− 16 sin(2τ)

)
and

δy(t) = 3δx(t) + 3δu(t) =
3

13

(
cos(2τ)− 1

5
sin(2τ)

)

Exercise 5

Find the values α and β for which the system with characteristic polynomial

ϕ(s) = s3 + αs2 + βs+ 1

is asymptotically stable.
Plot the stability region in the (α, β) plain.

1Note that, using integration by parts one obtains∫
e−3τ cos(2τ)dτ =

1

2
e3τ sin(2τ)−

3

2

∫
e3τ sin(2τ)dτ =

1

2
e3τ sin(2τ)−

3

2

[
−
1

2
e3τ cos(2τ) +

3

2

∫
e3τ cos(2τ)dτ

]
and thus ∫

e3τ cos(2τ)dτ =
1

13
e3τ (2 sin(2τ) + 3 cos(2τ))

2Note that, using integration by parts one obtains∫
e3τ cos(2τ)dτ =

1

2
e−3τ sin(2τ) +

3

2

∫
e−3τ sin(2τ)dτ =

1

2
e−3τ sin(2τ) +

3

2

[
−
1

2
e−3τ cos(2τ)−

3

2

∫
e−3τ cos(2τ)dτ

]
and thus ∫

e−3τ cos(2τ)dτ =
1

13
e−3τ (2 sin(2τ)− 3 cos(2τ))
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Solution

We can build the Routh table

1 β 0
α 1 0

αβ − 1

α
0

1

Imposing that all the elements in the first column are positive (like the first and the last one) we obtain

α > 0

αβ − 1 > 0

and thus

α > 0

β >
1

α

The stability region in the (α, β) plain is shown in Fig. 1.
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Figure 1: Stability region in the (α, β) plain.

Exercise 6

Find the values α and β for which the system with characteristic polynomial

ϕ(s) = s3 + (β + 1)s2 + (β + 1)s+ (α− 2β)

is asymptotically stable.
Plot the stability region in the (α, β) plain.

Solution

From the necessary condition we can derive the following constraints

β + 1 > 0

α− 2β > 0

or, equivalently

β > −1

β <
α

2

Fig. 2 shows these constraints in the (α, β) plain.
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Figure 2: Stability region in the (α, β) plain.

We can now build the Routh table

1 β + 1
β + 1 α− 2β

β2 + 4β + 1− α
β + 1
α− 2β

Imposing that all the elements in the first column are positive (like the first one) we obtain

β + 1 > 0

β2 + 4β + 1− α > 0

α− 2β > 0

and thus

β > −1

β <
α

2

β2 + 4β + 1 > α

The stability region in the (α, β) plain is shown in Fig. 3.
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Figure 3: Stability region in the (α, β) plain.
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