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All the design techniques we have discussed yield the transfer function 𝑅 𝑠
of the regulator.

How can we implement this transfer function on a real control system?

Devising a physical system whose behavior is described by the controller 

transfer function (analog control system).

Implementing the control system as an algorithm on a microprocessor, i.e., 

a PC or an embedded system (digital control system).

Let’s introduce the fundamental characteristics of digital control systems.
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Each signal in this block diagram is a continuous function, i.e. 𝑢 𝑡 ∶ ℝ → ℝ. 

We call these functions analog signals.

A microprocessor, however, cannot read analog signals… a microprocessor

• cyclically executes an instruction every 𝑇 milliseconds/microseconds

• cyclically updates its internal time every 𝑇 milliseconds/microseconds

• does not work as a continuous, but as a discrete time system

• its variables are represented as words with a finite number of bits, i.e.  

finite precision numbers

We conclude that a microprocessor works on digital signals.

Introduction to digital control systems (I) 3



Prof. Luca BascettaProf. Luca Bascetta

Excluding the controller, the “rest of the world” (actuators, sensors, process) 

works on analog signals.

In order to develop our control system on a microprocessor we have to 

introduce converters able to translate signals from the analog to the digital 

domain.

We will call these converters:

• A/D, analog to digital converter

• D/A, digital to analog converter

What happens if we introduce converters in our control architecture?

Introduction to digital control systems (II) 4
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The control architecture becomes…

We are now interested to analyze:

• how the converts work

• how the introduction of the converters affects the closed-loop system

• how we can convert the controller transfer function into an algorithm for 

the microprocessor

Introduction to digital control systems (III) 5
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Let’s consider

• an analog signal 𝑣 𝑡

• a sequence of time intervals of length 𝑇𝑐, the first one starting at 𝑡 = 0

If we take a value of 𝑣 𝑡 every 𝑇𝑐 time instants, we obtain the following 

sequence

of samples.

A/D converter (I) 6
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We introduce the following definitions:

• sampling, is the reduction of a continuous time signal 𝑣(𝑡) to a discrete 

time signal 𝑣∗ 𝑘

• 𝑇𝑐 is the sampling interval

• 𝑓𝑐 = Τ1 𝑇𝑐 (Ω𝑐 = Τ2𝜋 𝑇𝑐) is the sampling frequency or sampling rate

• 𝑓𝑠 = Τ1 2𝑇𝑐 (Ω𝑁 = Τ𝜋 𝑇𝑐) is the Nyquist frequency

A/D conversion entails two different operations:

• the reduction of a signal from continuous to discrete time (sampling)

• the conversion of each sample into a finite precision number 

(quantization)

Quantization is a nonlinear and complex operation. We will neglect it, as a 

correct design, i.e., selection of the number of bits of the converter, makes it 

negligible.

We will, instead, focus on the sampling operation.
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How the introduction of sampling affects the closed-loop system?

Sampling obviously causes a loss of information, 

the question is how we should select the

sampling rate in order to keep this loss

negligible, and allow for a reconstruction of the

analog signal from samples.

If we consider a sinusoidal signal (remember 

that each signal can be represented as a summation of sinusoids), we can 

easily show that the signal reconstructed from few samples can be a 

sinusoid with a larger period.

This effect is called aliasing.

We will now investigate how to select the 

sampling rate in order to avoid the aliasing effect 

and make the loss of information negligible.
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Consider again the problem of sampling a sinusoidal signal.

In the previous example we selected the 

sampling period equal to 

where ത𝑇 is the period of the sinusoidal signal.

Intuitively, we see that, in order to avoid aliasing, 

we need more than two samples for each period 

of the sinusoid.

We should thus select the sampling period in such a way that the constraint

is satisfied, or equivalently

The Nyquist frequency should be higher than the sinusoid frequency.
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If the Nyquist frequency is less or equal to the sinusoid frequency, aliasing 

harmonics arise.

It can be shown that the frequency of the lowest frequency aliasing 

harmonic is given by

In the previous example 

and thus
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We can now generalize the previous conclusion.

We call band-limited signal a signal whose Fourier transform or power 

spectral density has bounded support, i.e., it is almost zero for all the 

frequencies higher than the maximum frequency Ω𝑣.

Nyquist-Shannon sampling theorem

Given a band-limited signal 𝑣 𝑡 , whose maximum frequency is Ω𝑣, if

we can reconstruct the original signal 𝑣 𝑡 from its samples 𝑣∗ 𝑘 , without 

loss of information.

The original signal can be reconstructed using the Whittaker–Shannon 

interpolation formula
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In real applications, due to the presence of noise, no signal is band-limited.

In order to enforce the satisfaction of the Shannon theorem constraint, we 

need to introduce a low-pass filter called anti-aliasing filter.

The cutoff frequency of this filter should be selected in such a way that the 

residual harmonics of the filtered signal at the Nyquist frequency are 

negligible.

A/D converter (VII) 12
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D/A conversion is the invers of A/D conversion, i.e., we would like to 

reconstruct an analog signal from a sequence of samples.

Assuming that the signal has been sampled with a sample rate that satisfies 

the Shannon  theorem, can we use the Shannon interpolation formula?

We cannot use this formula in a control system, because it is a-causal: to 

reconstruct a time instant of the analog signal we need all the past and 

future history of the digital signal.

In order to solve this problem we can use an approximation of the Shannon 

formula based on extrapolation techniques, i.e., given a subset of the past 

history of the signal the converter computes the output value.

An example of these devices is the Zero-Order Hold (ZOH).

D/A converter (I) 13
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As can be seen from the image the sampling and reconstruction introduce a 

delay in the signal called sample-and-hold delay. It can be demonstrated 

that this delay is equal to half of the sampling period.

D/A converter (II) 14
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The digital controller is an algorithm that

computes in real-time the control variable

from the controlled and reference signals.

This algorithm can be arbitrarily complex, 

we will only consider algorithms that represent the input-output relation of a 

discrete time linear time-invariant dynamical system, i.e.

We have now to address the last issue, how to compute the transfer 

function 𝑅 𝑧 .

Digital controller (I) 15
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We can approach the design of the digital control system following two 

ways.

Digital controller (II) 16
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Assuming that a continuous time regulator 𝑅𝑜 𝑠 has been already designed 

on 𝐺 𝑠 , the aim of indirect digital control design technique is to find a 

discrete time transfer function 𝑅 𝑧 in such a way that the input-output 

relation of the red block is as similar as possible to the one of the 

continuous time regulator 𝑅𝑜 𝑠 .

To achieve this result we have to:

• select a suitable sampling time 𝑇𝑐
• determine the transfer function 𝑅 𝑧 from 𝑅𝑜 𝑠

Indirect digital controller design (I) 17



Prof. Luca BascettaProf. Luca Bascetta

Let’s start from the selection of a suitable sampling time 𝑇𝑐.

From Shannon theorem we know that the Nyquist frequency should be 

higher than the maximum frequency in the signal we would like to sample.

But…

• which signal should we consider in a closed-loop system?

• is it a band-limited signal?

• which is its maximum frequency?

Some answers:

• we sample the error signal

• in a closed-loop system all the signals have a maximum frequency that is 

well approximated by the crossover frequency 𝜔𝑐 (all the harmonics with 

a frequency higher than 𝜔𝑐 can be neglected)

Indirect digital controller design (II) 18
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We conclude that, in order to satisfy the Shannon theorem, the sampling 

frequency should be selected in such a way that

As a rule of thumb we can adopt the following criterion

The presence of measurement noise or high frequency components in the 

reference signal, however, can violate the band-limited constraint.

To avoid this problem we should introduce an anti-aliasing filter before the 

sampling device.

The filter cut-off frequency should be:

• higher than the crossover frequency

• no filtering action inside the closed-loop system bandwidth

• avoid excessive phase margin decrease

• lower than the Nyquist frequency

• to make the error a band-limited signal

Indirect digital controller design (III) 19
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To correctly select the sampling rate, we should also remember that the 

introduction of the sampler and holder devices is equivalent to a delay in the 

loop of Τ𝑇𝑐 2.

This delay causes a decrement of the phase margin equal to

The design of the analog controller 𝑅𝑜 𝑠 should thus ensure an adequate 

phase margin, so that the introduction of the sampler and holder does not 

affect too much the stability and performance of the closed-loop system.

The last problem we have to address is the derivation of the transfer 

function 𝑅 𝑧 from 𝑅𝑜 𝑠 .

Indirect digital controller design (IV) 20
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Consider a continuous time integrator

If we define

where 𝑇 is the integration interval, we have

where 𝑢𝑚 𝑡 is the average value of 𝑢 𝑡 in the integration interval.

If we approximate 𝑢𝑚 𝑡 with a linear convex combination of the values of 

𝑢 𝑡 at the first and last time instants

we obtain

Indirect digital controller design (V) 21



Prof. Luca BascettaProf. Luca Bascetta

Applying now the Z transform to the previous relation

we obtain

We can now compare the continuous time and discrete time transfer 

functions of an integrator

From this comparison we obtain a relation between 𝑠 and 𝑧 (bilinear 

transformation)

Indirect digital controller design (VI) 22
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We conclude that the digital controller transfer function can be computed 

applying the bilinear transformation as follows

We also introduce the following common transformations

• 𝛼 = 0 (forward Euler method)

• 𝛼 = 1 (backward Euler method)

• 𝛼 = Τ1 2 (Tustin method)

Indirect digital controller design (VII) 23
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Caveat: The forward Euler method can give rise to an unstable discrete time 

system, even if the continuous time system is asymptotically stable, when 

the sampling time is not sufficiently small.

Indirect digital controller design (VIII) 24
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Consider now an analog PI regulator

Using Tustin method we obtain the following discrete time transfer function

where

In conclusion

PI digital regulator (I) 25



Prof. Luca BascettaProf. Luca Bascetta

The previous transfer function can be rewritten as

and

Applying the inverse Z transform

This equation is an algorithm that allows to compute the control variable 

given the controlled signal and the reference, and it can be easily 

implemented on a microprocessor.

PI digital regulator (II) 26
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In this case the process, together with the A/D and D/A converters, is 

considered as a discrete time system, and the regulator is designed using 

discrete time system design tools.

We will not analyze discrete time system design tools.

We are just interested in the methodology used to compute an equivalent 

discrete time transfer function of the process, together with the A/D and D/A 

converters.

Direct digital controller design (I) 28
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It can be easily shown that, if 𝐀, 𝐁, 𝐂, 𝐃 is the state-space realization of a 

continuous time system of transfer function 𝐺 𝑠 (assuming that 𝐺 𝑠 has no 

delays), the discrete time system having as input 𝑢∗ and output 𝑦∗ has the 

following realization

This transformation is called zero-order hold method.

Direct digital controller design (II) 29
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Analyzing the previous result and, in particular

we discover a relation between the eigenvalues of the continuous time and 

the discrete time system

This relation explains how the modes of the continuous time system are 

transformed into the ones of the discrete time system.

Direct digital controller design (III) 30
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