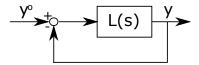
FONDAMENTI DI AUTOMATICA PROF. LUCA BASCETTA

Soluzioni della seconda prova scritta intermedia 25 giugno 2018

ESERCIZIO 1

Si consideri il sistema di controllo di figura, con y variabile controllata e y^o riferimento:



in cui:

$$L(s) = R(s)G(s),$$
 $R(s) = \frac{\rho}{(1+s)}$ $G(s) = \frac{1}{(1+s)^2}$

1. Si tracci il luogo delle radici al variare di $\rho > 0$.

La funzione di trasferimento L(s) può essere riscritta, ai fini del tracciamento del luogo delle radici, nella seguente forma:

$$L(s) = \frac{\rho}{(s+1)^3}$$

La funzione di trasferimento non ha zeri e presenta 3 poli coincidenti (m = 0, n = 3), con $p_i = 1$, i = 1, 2, 3. Sia il luogo diretto, sia quello inverso, sono quindi caratterizzati da 3 asintoti, che si incontrano nel punto dell'asse reale di ascissa:

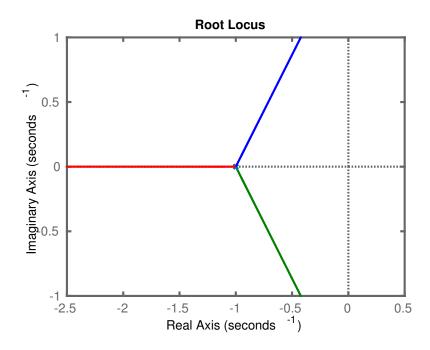
$$x_a = \frac{\sum_i z_i - \sum_i p_i}{n - m} = \frac{-(1 + 1 + 1)}{3} = -1$$

Nel luogo diretto, gli asintoti formano con l'asse reale orientato positivamente i seguenti angoli:

$$\vartheta_{ah} = \frac{180^{\circ} + h \ 360^{\circ}}{n - m} = 60^{\circ} + h \ 120^{\circ}$$

ovvero, con h = 0, 1, 2, gli angoli 60° , 180° , 300° .

Tenendo conto della regola di appartenenza dei punti dell'asse reale al luogo, il luogo diretto si traccia come in figura:

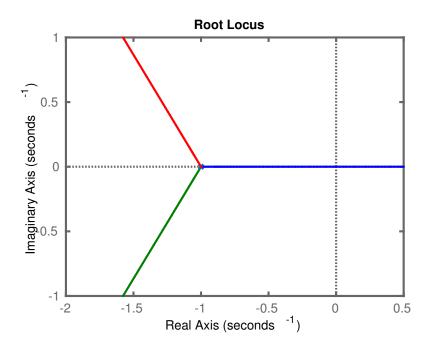


2. Si tracci il luogo delle radici al variare di $\rho < 0$.

Nel luogo inverso, gli asintoti formano con l'asse reale orientato positivamente i seguenti angoli:

$$\vartheta_{ah} = \frac{h \ 360^{\circ}}{n - m} = h \ 120^{\circ}$$

ovvero, con h=0,1,2, gli angoli 120° , 240° , 360° . Il luogo inverso si traccia come in figura:



3. Si determinino con il luogo delle radici i valori di ρ per cui il sistema in anello chiuso è asintoticamente stabile

Nel luogo diretto un polo si muove sull'asse reale, rimanendo nel semipiano sinistro per qualunque valore di $\rho > 0$, gli altri due poli, invece, sono complessi e coniugati e si muovono verso il semipiano destro. È possibile determinare il valore di ρ , $\bar{\rho}_M$, per cui tali poli si trovano sull'asse immaginario sfruttando la regola del baricentro.

Dalla configurazione dei poli di L(s) si ricava che il baricentro vale -3. Quando due dei tre poli hanno parte reale nulla, quindi, il terzo sarà in -3. Dalla regola della punteggiatura ($\bar{s} = -3$) si ricava

$$|\bar{\rho}_M| = 2 \cdot 2 \cdot 2 = 8$$
 \Rightarrow $\bar{\rho}_M = 8$

Nel luogo inverso, invece, due poli, complessi e coniugati, rimangono nel semipiano sinistro per qualunque valore di $\rho < 0$; il terzo polo, reale, si muove verso il semipiano destro. È quindi possibile determinare il valore di ρ , $\bar{\rho}_m$, per cui tale polo si trova sull'asse immaginario punteggiando in $\bar{s} = 0$. Dalla regola della punteggiatura ($\bar{s} = 0$) si ricava

$$|\bar{\rho}_m| = 1 \cdot 1 \cdot 1 = 1 \qquad \Rightarrow \qquad \bar{\rho}_m = -1$$

In conclusione, il sistema in anello chiuso asintoticamente stabile per

$$-1 < \rho < 8$$

4. Si spieghi se, quando uno o più dei poli in anello chiuso hanno parte reale -2, il sistema in anello chiuso è asintoticamente stabile.

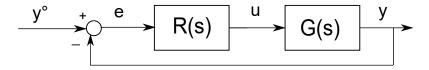
Il sistema in anello chiuso può presentare poli a parte reale -2 in due casi.

Nel luogo diretto, un polo può essere reale di valore -2 e in tal caso, poiché la somma delle parti reali dei poli in anello chiuso vale -3 per qualunque valore di ρ , gli altri due poli saranno complessi e coniugati con parte reale -0.5: il sistema in anello chiuso è asintoticamente stabile.

Nel luogo inverso, due poli possono essere complessi e coniugati con parte reale -2 e in tal caso, sempre perché la somma delle parti reali dei poli in anello chiuso vale -3, il terzo polo sarà reale nel punto +1: il sistema in anello chiuso è instabile

ESERCIZIO 2

Si consideri il seguente sistema di controllo:



dove

$$G(s) = \frac{1 - s}{(1 + 10s)^2}$$

- 1. Si determini la funzione di trasferimento R(s) del regolatore in modo tale che:
 - con un riferimento $y^{\circ}(t) = 10sca(t)$ l'errore $e(t) = y^{\circ}(t) y(t)$ soddisfi la limitazione, a transitorio esaurito, $|e_{\infty}| < 0.15$;
 - il margine di fase φ_m sia maggiore o uguale di 65°;
 - la pulsazione critica ω_c sia approssimativamente massimizzata.

Essendo richiesto un errore a transitorio esaurito finito ma non necessariamente nullo, è sufficiente che la funzione di trasferimento d'anello abbia tipo g_L nullo, e quindi che anche il tipo della funzione di trasferimento del regolatore, g_R , sia nullo.

In questo caso, l'errore vale:

$$|e_{\infty}| = \frac{10}{1 + \mu_R} \le 0.15$$

Per soddisfare la specifica dovremo quindi scegliere

$$\mu_R \ge \frac{10}{0.15} - 1 = 65.6$$

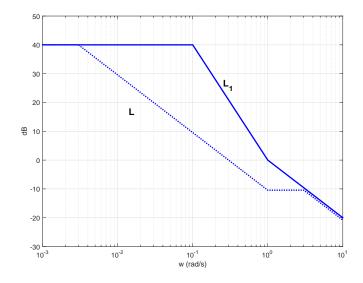
È opportuno scegliere $\mu_R = 100$ per cui il progetto statico si conclude con

$$R_1(s) = \frac{\mu_R}{s^{g_R}} = 100$$

Per il progetto dinamico, consideriamo la funzione di trasferimento:

$$L_1(s) = R_1(s)G(s) = 100\frac{1-s}{(1+10s)^2}$$

Tracciandone il diagramma di Bode del modulo, ci si rende subito conto, per la presenza dello zero nel semipiano destro alla pulsazione 1, che il margine di fase è negativo o del tutto insufficiente. Si sceglie allora di tagliare alla pulsazione 0.3 con pendenza -1, raccordando il diagramma di |L| a quello di $|L_1|$ in bassa frequenza, mantenendo lo zero alla pulsazione 1, e raccordando il diagramma di |L| con quello di $|L_1|$ alla pulsazione 3:



Si ottiene quindi $\omega_c = 0.3$ e, per quanto riguarda fase critica e margine di fase:

$$\varphi_c = -\arctan(\frac{0.3}{0.003}) - \arctan(\frac{0.3}{1}) - \arctan(\frac{0.3}{3}) = -89^{\circ} - 17^{\circ} - 6^{\circ} = -112^{\circ}$$

$$\varphi_m = 180^{\circ} - |\varphi_c| = 68^{\circ}$$

Tutte le specifiche sono soddisfatte e risulta:

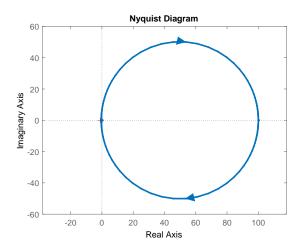
$$L(s) = 100 \frac{1 - s}{(1 + s/0.003)(1 + s/3)}$$

L'espressione della funzione di trasferimento del controllore è quindi:

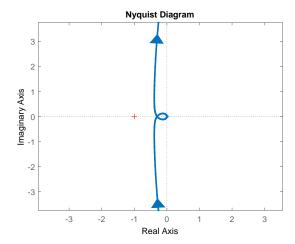
$$R(s) = R_1(s)R_2(s) = R_1(s)\frac{L(s)}{L_1(s)} = 100\frac{(1+10s)^2}{(1+333s)(1+0.33s)}$$

2. Si tracci il diagramma di Nyquist qualitativo associato alla funzione di trasferimento d'anello L(s) determinata al punto precedente, avendo cura di riportare nel disegno la posizione del punto -1.

Il modulo della risposta in frequenza $L(j\omega)$ parte dal valore 100 e diminuisce monotonicamente, mentre la fase parte dal valore 0 e tende asintoticamente al valore -270° . Con queste informazioni si può tracciare il diagramma polare associato a L e quindi il diagramma di Nyquist:



Dettaglio:



Poiché sappiamo dal criterio di Bode che il sistema in anello chiuso è asintoticamente stabile, per il criterio di Nyquist il diagramma di Nyquist non potrà compiere giri intorno al punto -1, ovvero si troverà tutto alla destra di tale punto.

3. Senza eseguire i relativi conti, si scrivano le formule necessarie al calcolo del margine di guadagno specificatamente applicate al sistema di controllo del presente esercizio.

Occorre dapprima determinare la pulsazione ω_{π} alla quale la fase della risposta in frequenza $L(j\omega)$ vale -180° :

$$\arg L(\omega_{\pi}) = -\arctan(\omega_{\pi}) - \arctan(333\omega_{\pi}) - \arctan(0.33\omega_{\pi}) = -180^{\circ}$$

A questo punto si valuta il modulo di $L(j\omega)$ alla pulsazione ω_{π} :

$$|L(\omega_{\pi})| = 100 \frac{\sqrt{1 + \omega_{\pi}^2}}{\sqrt{1 + (333\omega_{\pi})^2} \sqrt{1 + (0.33\omega_{\pi})^2}}$$

Il margine di guadagno è l'inverso del modulo così calcolato:

$$k_m = \frac{1}{|L(\omega_\pi)|}$$

ESERCIZIO 3

Si consideri un controllore digitale, con funzione di trasferimento R(z), descritto in termini del legame tra il suo ingresso (l'errore discreto $e^*(k)$) e la sua uscita (la variabile di controllo discreta $u^*(k)$) da:

$$u^*(k) = 0.5u^*(k-1) + 0.1e^*(k-1)$$

1. Si determini la funzione di trasferimento, R(z), del controllore digitale.

Il legame tra l'errore e la variabile di controllo è assegnato mediante un'equazione alle differenze.

Si può quindi procedere applicando la Trasformata Zeta al primo e al secondo membro

$$U^*(z)(1 - 0.5z^{-1}) = 0.1E^*(z)z^{-1}$$

La funzione di trasferimento del controllore digitale sarà pertanto

$$R(z) = \frac{U^*(z)}{E^*(z)} = \frac{0.1}{z - 0.5}$$

2. Si verifichi se il controllore digitale del punto precedente può derivare dalla discretizzazione, mediante il metodo di Tustin, del controllore analogico

$$R^{\circ}(s) = 0.2 \frac{1 - 0.25s}{1 + 0.75s}$$

In caso affermativo si determini anche il periodo campionamento T compatibile con tale discretizzazione.

Metodo di Tustin

$$s = \frac{2}{T} \frac{z - 1}{z + 1}$$

Discretizzando il controllore $R^{\circ}(s)$ con il Metodo di Tustin si ha

$$R(z) = R^{\circ} \left(\frac{2}{T} \frac{z-1}{z+1} \right) = 0.2 \frac{(T-0.5)z + T + 0.5}{(T+1.5)z + T - 1.5}$$

Evidentemente, se si pone il periodo di campionamento T=0.5 ne segue che

$$R(z) = R^{\circ} \left(4 \frac{z - 1}{z + 1} \right) = 0.1 \frac{1}{z - 0.5}$$

che coincide con il controllore digitale assegnato.

3. Supponendo che l'errore sia $e^*(k) = (0.2)^k$, $k \ge 0$, si trovi l'andamento analitico della variabile di controllo discreta $u^*(k)$, utilizzando il metodo di antitrasformazione di Heaviside.

La Trasformata Zeta dell'errore è

$$E^*(z) = \frac{z}{z - 0.2}$$

e quindi la Trasformata Zeta della variabile di controllo risulta essere

$$U^*(z) = R(z)E^*(z) = \frac{0.1z}{(z - 0.5)(z - 0.2)}$$

Il metodo di Heaviside applicato a $U^*(z)/z$ porta alla scomposizione nelle due frazioni semplici

$$\frac{U^*(z)}{z} = \frac{1}{3} \frac{1}{z - 0.5} - \frac{1}{3} \frac{1}{z - 0.2}$$

Da questa espressione, moltiplicando a sinistra e a destra per z, si ricava la Trasformata Zeta $U^*(z)$ e quindi la variabile di controllo discreta in funzione del tempo k

$$u^*(k) = \frac{1}{3}(0.5)^k - \frac{1}{3}(0.2)^k, \ k \ge 0$$