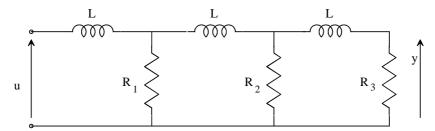
Automatica

(Prof. Bascetta)

Quarto appello Anno accademico 2011/2012 25 Settembre 2012

Cognome:	
Nome:	
Matricola:	
]	Firma:

Avvertenze:


- Il presente fascicolo si compone di **8** pagine (compresa la copertina). Tutte le pagine utilizzate vanno firmate.
- Durante la prova non è consentito uscire dall'aula per nessun motivo se non consegnando il compito o ritirandosi.
- Nei primi 30 minuti della prova non è consentito ritirarsi.
- Durante la prova non è consentito consultare libri o appunti di alcun genere.
- Non è consentito l'uso di calcolatrici con display grafico.
- Le risposte vanno fornite **esclusivamente negli spazi** predisposti. Solo in caso di correzioni o se lo spazio non è risultato sufficiente, utilizzare l'ultima pagina del fascicolo.
- La chiarezza e l'**ordine** delle risposte costituiranno elemento di giudizio.
- Al termine della prova va consegnato **solo il presente fascicolo**. Ogni altro foglio eventualmente consegnato non sarà preso in considerazione.

Firma:		
1 11 111a	 	

Utilizzare questa pagina SOLO in caso di correzioni o se lo spazio a disposizione per qualche domanda non è risultato sufficiente

Esercizio 1

Si consideri la rete elettrica riportata in figura:

1.1 Si scrivano le equazioni del sistema che descrive la dinamica della rete elettrica.

1.2 Posto L = 1, $R_1 = 2$, $R_2 = 2$, $R_3 = 1$, si discuta la stabilità del sistema.

- :		
F1rma:	 	

1.3	Si determini	nel modo	niù ranido	nossibile il	l valore ini:	ziale della r	isposta di	v ad uno scalino	unitario in <i>u</i>
1.0	or acterimin,	nei mouo	più rapido	possibile, ii	i vaiore min	Liaic uciia i	isposta ui	y au uno scamio	unitario in u .

1.4 Si determini, se possibile, il valore finale della risposta di y ad uno scalino unitario in u.

Esercizio 2

Si consideri il sistema di funzione di trasferimento:

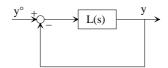
$$G(s)=2\frac{1-3s}{2+s}.$$

2.1 Si tracci l'andamento qualitativo della risposta del sistema allo scalino unitario.

Firma:		
1 11 111a	 	 . .

2.2 Si determini l'espressione analitica della risposta tracciata qualitativamente al punto precedente.

2.3 Si dica, motivando la risposta, se il sistema è asintoticamente stabile e a fase minima.


2.4 Si consideri ora la generica funzione di trasferimento:

$$G(s) = \mu \frac{(1+s\tau)^n}{(1+sT)^n},$$

con $\mu>0$, T>0, $\tau<0$, n intero positivo. Si determini per quali valori di n la risposta allo scalino parte da un valore positivo e per quali valori parte da un valore negativo.

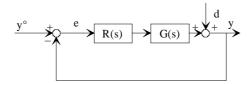
Esercizio 3

Si consideri un generico sistema di controllo:

3.1 Si dia la definizione di "banda passante" del sistema di controllo.

3.2 Posto ora:

$$L(s) = 10 \frac{1 + 10s}{(1 + s)^2 (1 + 0.002s)}$$


si valuti la banda passante del sistema in anello chiuso.

3.3 Sempre con la L(s) del punto precedente, si tracci l'andamento qualitativo della risposta di y ad uno scalino unitario in y° .

3.4 Si determini il massimo valore di un ritardo di tempo che, inserito nell'anello, non rende instabile il sistema di controllo.

Esercizio 4

Si consideri il sistema di controllo di figura:

dove
$$G(s) = \frac{5}{(1+s)^2(1+0.1s)}$$
.

4.1 Si determini la funzione di trasferimento R(s) del regolatore in modo tale che:

In presenza di un riferimento $y^{\circ}(t) = A \operatorname{sca}(t)$, e di un disturbo $d(t) = D \operatorname{sca}(t)$, con $|A| \le 2$, $|D| \le 1$, l'errore e a transitorio esaurito (e_{∞}) soddisfi la limitazione $|e_{\infty}| \le 0.05$

- Il margine di fase φ_m sia maggiore o uguale a 50° e la pulsazione critica ω_c sia maggiore o uguale a 3 rad/s.
- Il regolatore sia di ordine non superiore a due.

		firma:
		11 6 11 6
4.2	Con il regolatore così progettato, si tracci il diagramma polare qualitativo	vo associato alla funzione di trasferimento
	d'anello, individuando approssimativamente sul diagramma il punto corr	rispondente a $\omega = \omega_c$.