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Motivations (I)

Consider the following problems:

• determine the damping coefficient of a passive damper

• determine the damping coefficient of  a switchable damper

in order to enforce a desired behavior of the suspension system
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Motivations (II)

We can now write the differential equation that describes the suspension 

system as follows

The same relation can be expressed using

a closed-loop system

That can be further elaborated as follows
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Motivations (III)

The original problem (changing the damping coefficient in order to enforce a 

desired behavior of the suspension system) can be now reformulated as

Determine the positions in the complex plane of the poles of the closed-loop 

system for any positive value of D.
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Goals

Given a loop transfer function

we aim at studying the poles of the closed-loop system or, equivalently, the 

roots of the characteristic equation

and, in particular, how these roots move in the complex plain when the 

value of the gain changes.
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Root locus (I)

Given a loop transfer function

we define root locus the curve in the complex plane generated by the roots 

of the characteristic equation for different values of the real parameter ρ in 

the range −∞, 0 (0, +∞]

• 𝜌 ∈ (0,+∞], “direct” root locus (negative feedback)

• 𝜌 ∈ [−∞, 0), “inverse” root locus (positive feedback)

Note that, for 𝜌 = 0 we have no feedback, and thus the closed-loop poles 

correspond to the poles of 𝐿(𝑠).
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Root locus (II)

Assuming that the loop transfer function can be expressed as

the characteristic equation is equivalent to the following complex equation

that can be expressed by way of two real equations
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This equation determines 

the shape of the root locus

Given ҧ𝑠 ∈ ℭ, belonging to the locus, 

this equation determines the value 

of 𝜌 for which a closed-loop pole is 

located at ҧ𝑠
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Sketching the root locus (I)

How to plot the root locus of  𝐿 𝑠 =
𝜌

𝑠 𝑠+3 𝑠+5
?

Using MATLAB…

» L = tf(1,conv([1 0],conv([1 3],[1 5])));

» figure, rlocus(L)

… or introducing a set of simple rules that allow to sketch the root locus 

using minimal calculation, so as to have an intuitive insight into the 

behavior of the closed-loop system.
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Sketching the root locus (II)

Consider again a loop transfer function 𝐿(𝑠) where

• 𝑚, is the degree of the numerator 𝑁(𝑠)

• 𝑛, is the degree of the denominator 𝐷(𝑠)

• 𝜈 = 𝑛 −𝑚 > 0, is the relative degree

For a given 𝜌, we define centroid or center of gravity the sum of closed-loop 

poles divided by 𝑛, as follows
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Sketching the root locus (III)

Rule 1. The root locus has 2𝑛
branches (closed-loop poles migrating 

in the complex plane): 𝑛 belong to the 

“direct” locus, 𝑛 to the “inverse” one.

Rule 2. The root locus is symmetric 

with respect to the real axis.

Rule 3. Branches begin ( 𝜌 → 0) at 

poles of 𝐿(𝑠).

Rule 4. When 𝜌 → ∞, 𝑚 branches 

end at zeros of 𝐿(𝑠), 𝜈 branches go to 

infinity approaching an asymptote.
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Sketching the root locus (IV)

Rule 5. The root locus lies on the real 

axis to the left of an

• odd number (direct locus)

• even number (inverse locus)

of singularities (poles and zeroes).

Rule 6. Asymptotes intersect at a point 

on the real axis, whose coordinate is 

given by

They form an angle with the real axis, 

whose value is given by
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Sketching the root locus (V)

Rule 5. The root locus lies on the real 

axis to the left of an

• odd number (direct locus)

• even number (inverse locus)

of singularities (poles and zeroes).

Rule 6. Asymptotes intersect at a point 

on the real axis, whose coordinate is 

given by

They form an angle with the real axis, 

whose value is given by
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Sketching the root locus (VI)

Consider again the transfer function 𝐿 𝑠 =
𝜌

𝑠 𝑠+3 𝑠+5
, we would like to 

sketch the inverse locus.

From the previous analysis it follows that
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Stability analysis (I)

Now that we have sketched the direct and inverse root loci, we are 

interested to study the stability of the closed-loop system, i.e., to determine 

the values of 𝜌 for which the closed-loop poles lie in the open left half plane.
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Stability analysis (II)

There are no negative values of 𝜌 for which the closed-loop system is 

asymptotically stable.
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For 𝜌 < 𝜌𝑀 the closed-loop system is asymptotically stable.

How to find the value of 𝜌𝑀?

Stability analysis (III) 16
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How to find the value of 𝜌𝑀? …we need two more rules!

Stability analysis (IV) 17

Rule 7. When 𝜈 ≥ 2, the center of 

gravity is constant (i.e., it anymore 

depends on 𝜌) and lies at a point on the 

real axis, whose coordinate is given by
+𝑗𝛼

−𝑗𝛼

−𝑝3

Thanks to rule 7 we know that, when two of 

the poles are located on the imaginary axis, 

the third one, that is on the real axis, is 

located at

−
1

3
𝑗𝛼 − 𝑗𝛼 + 𝑝3 = −

8

3
⇒ −𝑝3= −8
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How to find the value of 𝜌𝑀? …it is the value of the gain for which the third 

pole is located at  −8.

The problem is now: how to find the value of the gain for which one of the 

closed-loop poles is at a specific point on the locus?

Stability analysis (V) 18

Rule 8. At any point ത𝒔 on the locus, the 

absolute value of the gain can be 

calculated as the product of distances 

from the point to the poles divided by 

the product of distances from the point 

to the zeroes (if there are no zeroes, 

the denominator is 1)

3
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Stability analysis (VI)

The conclusion of the stability analysis is that the closed-loop system is 

asymptotically stable for

0 < 𝜌 < 120
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Caveat!

There are 3 other rules that allow to refine the sketch of the root locus… we 

will not see them!

 If you need a refined sketch you can use Matlab!

Sometimes there are more sketches that satisfy the rules

 If you need to disambiguate this situation you can use Matlab!

Sometimes the closed-loop poles configuration is too complex (e.g. two 

poles on the imaginary axis and two on the real axis) and the centroid rule 

is not sufficient to perform the stability analysis.

 A numerical analysis can be performed using Matlab!
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Transient response design and stabilization (I)

The root locus can be used to

• shape the closed-loop transient response

• stabilize the closed-loop system (e.g., starting from an unstable loop 

transfer function)

The root locus cannot be used to arbitrarily determine the places of the 

closed-loop poles, e.g., two points of the complex plane that do not belong 

to the locus...

 we will see another tool to solve this problem
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Transient response design and stabilization (II)

Consider the following control system

where 𝐺 𝑠 =
1

𝑠+1 𝑠−2
.

Design the controller 𝑅(𝑠) so that the closed-loop system is asymptotically 

stable and has two real closed-loop poles placed at −2.

Let’s start considering a simple algebraic regulator

𝑅 𝑠 = 𝜌

the loop transfer function becomes

𝐿 𝑠 =
𝜌

𝑠 + 1 𝑠 − 2
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Transient response design and stabilization (III)

With an algebraic regulator, for any value of 𝜌 the closed-loop system is not 

asymptotically stable

 we have to introduce a more complex regulator

23
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Transient response design and stabilization (IV)

Let’s consider the direct root locus.

• to stabilize the closed-loop system

 we have to move the vertical asymptote to the left half plane

• to place the closed-loop poles at −2

 the asymptote must cross the real axis at −2
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Transient response design and stabilization (V)

We cannot remove the pole in the right half plane, but we can remove the 

pole in the left half plane and substitue it with a pole at −6.

The controller that achieves this result is
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Transient response design and stabilization (VI)

Now there are values of 𝜌 for which the closed-loop system is 

asymptotically stable and, in particular, there is a value that gives rise to two 

real closed-loop poles placed at −2.

Let’s compute the value ҧ𝜌 that places the poles at −2
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