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Motivations

This part introduces the fundamentals of classic control theory. We will
focus on the design of SISO regulators in the frequency domain.

The main topics we will face are:

frequency response

introduction to control systems

loop stability analysis

loop transient performance analysis
loop steady-state performance analysis
control system design

feedforward compensation

cascaded control

PID regulators
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Frequency response (l)
Given a general LTI dynamical system, represented by the transfer function

G(s), let’'s consider the sinusoidal response.
T=2C

G(s) >

u(t):Asin(J)t+q0)\ \
VUV

If G(s) is asymptotically stable, in steady state sinusoidal inputs generate

E||-6I—

sinusoidal responses of the same frequency
y(t) = Bsin (®f + y)

B=A|G(jo)|
v=0+/G(jd)
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Frequency response (Il)

The frequency response of a system, whose transfer function is G(s), is
G(jow) >0

a complex function of the real variable w.

A few remarks:

» the frequency response is the transfer function evaluated along the
positive imaginary axis

 w Is called frequency

» the frequency response can be defined for stable and unstable LTI
systems

» the sinusoidal response theorem holds only for asymptotically stable LTI
systems

The frequency response is a complex function, how can we plot it?

Prof. Luca Bascetta - I POLITECNICO DI MILANO




Frequency response (llI)

We can plot separately the absolute value and the argument (Cartesian
plots) or we can plot the curve on the complex plane (Polar plots).

|G (jw)|

-~ Imd

£G(jw) &&/ﬂ/ Re

Polar plot

S~ W

Cartesian plot
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Frequency response (V)

Let’s start from Cartesian plots and, in particular, from Bode plots.

In Bode plots, the frequency response absolute value and argument are
plotted in two separate Cartesian plots.

In both plots the x-axis (frequency axis) is a logarithmic axis.

I al).I 0)2 al)3 a)4 I I
0 w0 1 10

log () —log (@) = log(ay) —log(ws) = — =
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Frequency response (V)

Let’s start from Cartesian plots and, in particular, from Bode plots.

In Bode plots, the frequency response absolute value and argument are
plotted in two separate Cartesian plots.

In both plots the x-axis (frequency axis) is a logarithmic axis.
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Frequency response (V)

Let’s start from Cartesian plots and, in particular, from Bode plots.

In Bode plots, the frequency response magnitude and argument are plotted
In two separate Cartesian plots.

In both plots the x-axis (frequency axis) is a logarithmic axis.

decade

In both plots the y-axis is a linear axis.

We will call both plots semi logarithmic plots, and draw it on semi
logarithmic paper.
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Frequency response (V)

In the magnitude plot the y-axis is a linear axis.
The absolute value of the frequency response is plotted in decibel

|G (jo) |ap = 2010g |G (jo) |
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Frequency response (VI)

In the phase plot the y-axis is a linear axis.
The argument of the frequency response is plotted in degrees.
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Frequency response (VII)

For control system analysis and design we will use the asymptotic Bode
plots.

Asymptotic Bode plots are an approximation of Bode plots that can be
easily manually drawn.

We will now introduce the rules to draw asymptotic Bode plots.
The rules make reference to the gain-time constant form

b JL(1+sm)
- s# T1; (1 +sT))

G(s)
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Frequency response (VIII)

Magnitude plot

1. For w — 0, the plot starts with a line having slope —g and going through
point w = 1rad/s, |G|lag = |ulap.

2. At every frequency corresponding to p real poles (zeros), slope
decreases (increases) of p units.

3. At every frequency corresponding to the natural frequency of p complex
poles (zeros), slope decreases (increases) of 2p units.

4. For w — oo, the slope of the plot equals the difference between the
number of zeros and the number of poles of the transfer function.

In asymptotic Bode plots slopes are multiples of 20 dB/decade (slope 2
means 40 dB/decade, slope -3 means -60 dB/decade)
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Frequency response (IX)

Phase plot

1. For w — 0, the plot starts with a line parallel to the x-axis and crossing
the y-axis at zu — g90°.

2. At every frequency corresponding to p real zeros in the left half plane or
p real poles in the right half plane, the phase increases of p90°
degrees.

3. At every frequency corresponding to p real zeros in the right half plane
or p real poles in the left half plane, the phase decreases of p90°
degrees.

4. At every frequency corresponding to the natural frequency of p complex
zeros in the left half plane or p complex poles in the right half plane, the
phase increases of p180° degrees.

5. At every frequency corresponding to the natural frequency of p complex
zeros in the right half plane or p complex poles in the left half plane, the
phase decreases of p180° degrees.
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Fhase (deq)

Frequency response — Example
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Frequency response (X)

Polar plots are the other way to plot frequency response.

Polar plots are the image of the complex number G (jw) for w € [0, ).

We will see how polar plots can be drawn, deriving from Bode plots how the
magnitude and phase of ¢ (jw) change as w changes.

Caveat: if the transfer function G (s) has poles on the imaginary axis its polar
plot tends to infinity along asymptotes whose equations can be analytically
computed.
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Magnitude (dB)

Fhase (deg)

Frequency response — Example

Frequency (radfs)
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Frequency response (XI)

The sinusoidal response theorem can be easily extended to general
periodic or a-periodic input signals using Fourier series and Fourier integral.

Let’s start from periodic input signals

u(t+T)=u(t) Vt

/ﬂmmw<m
0

that can be represented as series of sinusoidal signals as
(@)

2T
M(I)ZUO—i—ZUnCOS(na)Of—i—(PR) (!.)0: T
n=1
If G(s) is asymptotically stable, in steady state periodic inputs generate
periodic responses of the same fundamental frequency

y(t) =Yy + Z Y, cos (nwot + ;)

n=1

Y, = |G (jnay) |Uy
Vo = @+ ZG (jnay)
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Frequency response (XII)

Consider an a-periodic input signal

AT :u(t+T)=u(t) WVt
/+m|u(t)]dt < oo

—0CQ

that can be represented as integral of sinusoidal signals as
u(t) = / U(®)cos (0 + ¢(0)) do
0

If G(s) is asymptotically stable, in steady state a-periodic inputs represented
as a Fourier integral generate a-periodic responses that can be represented
as a Fourier integral

W(t) = /0 Y (@) cos (0 + (@) do
Y(w)=|G(jo)|U(o)
y(0) =9(0)+ £G(jo)
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Frequency response (XIII)

Using the sinusoidal response theorem and its extensions based on Fourier
series and Fourier integral we can compute the response to any sinusoidal,
periodic or a-periodic signal.

Intuitively, the sinusoidal response theorem states that sinusoidal harmonics
are changed in amplitude and phase by the dynamical system, depending
on the system frequency response.

In view of this interpretation, an asymptotically stable LTI system acts as a
filter on input signals: some harmonics are left unchanged, other are
amplified and other are attenuated.

There are many different filters, here we will describe only the low-pass filter
that has important applications in control system analysis and design.

Prof. Luca Bascetta - I POLITECNICO DI MILANO




Frequency response (XIV)

A low-pass filter is an asymptotically stable LTI system whose frequency
response has the following magnitude Bode plot

NG (w)|

|f
G(jw)|lss <3 Vo

we can define the cutoff frequency w,; and the passband
PB={0:|G(jo)|sm > 3} = (0,0
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Introduction to control systems ()

A general feedback control system can be represented by the following
block diagram

o
Lor Controller ¢, Actuators m, Process LN
A
¢ Sensors |«
TdT
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Introduction to control systems (ll)

Assuming that all the components can be described by linear systems, the
block diagram can be drawn introducing the transfer functions

A | F(s)

U () FoConl R(s) | A(s) s8] P(s) s

=

\/

O T(S) -
Td'r
and simplifying the block diagram
o g
— T(s) —| R(s) F| A(s) F2{ P(s) —0——~

20
A

n(s) =T(s) " 'dr(s)
d(s) = P(s)da(s) +H(s)dp(s)

S
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Introduction to control systems (llI)

Finally, the control system is represented by the following block diagram

d
J o> R(s) F| G(s) ,tcli Y

»

where
G(s) =T (s)P(s)A(s)

IS the transfer function of the process including actuators and sensors.

In the problem we will study, the goal will be the design of the controller
transfer function R(s) given the system transfer function G(s).

In a real problem the control engineer has to model the process and select
sensors and actuators as well.
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Introduction to control systems (1V)

The design of the control system is driven by a set of requirements
specification.

The main requirements are:

« asymptotic stability (nominal and robust)

» steady-state performance (steady-state error)

« transient performance (response time, disturbance rejection, oscillation
damping)

» control effort mitigation

We will first study how to analyze a closed-loop system, given the controller
transfer function R(s).

Then control system design techniques based on Bode plots will be
discussed.
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Loop stability analysis (I)

We start analyzing the stability of the closed-loop system.
Given the block diagram

d
Y 5 R(s) G(s) —»(l)—y—-

T O
b

to analyze the system stability we can neglect disturbances and introduce
the loop transfer function

<

\ 4

L(s) = R(s)G(s)

and the block diagram can be simplified as follows

O

I so—| L(s) >

We will assume L(s) the transfer function of a strictly proper LTI system.
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Loop stability analysis (lI)

The loop transfer function can be expressed as
N(s
L(s) = (5)
D(s)

The transfer function from the set point y° to the controlled variable y is,
Instead, given by
N(s)

V) L) b NG
Yo(s) 1+L(s) H_% N(s)+D(s)

The poles of this transfer function are the poles of the closed-loop system,
we can thus define a characteristic polynomial of the closed-loop system as

%(s) = N(s) +D(s)

We conclude that the closed-loop system is asymptotically stable if and only
If all the roots of the characteristic polynomial lie in the open left half plane.
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Loop stability analysis (lI)

Caveat: if pole-zero cancellations occur in the product R(s)G (s) and these
poles/zeros lie in the closed right half plane, the closed-loop system cannot
be asymptotically stable (there is an hidden dynamics that is not
asymptotically stable).

The analysis of the characteristic polynomial can be used to assess the
stability of the closed-loop system, but it does not represent a viable
solution for control design purposes (i.e., to select R(s) in such a way that
the closed-loop system is asymptotically stable).

For this reason we will now introduce two graphical methods to assess the
stability of a closed-loop system.
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Loop stability analysis (V)

Nyquist stability criterion is a graphical technigue to determine the stability
of a closed-loop system analyzing the frequency response of the loop
transfer function.

Let’s first introduce the following definitions:

* Nyquist plot, a closed curve constituted by the Polar plot of the loop
transfer function L(s) (the curve is oriented in the direction of increasing
w) and its symmetric with respect to the real axis

* P4, number of poles of L(s) lying in the open right half plane

N, number of plot’'s encirclements of —1; we consider clockwise
encirclements to be negative and counterclockwise encirclements to be
positive (if Nyquist plot crosses the real axis at —1, N is undefined)

Nyquist stability criterion states that the closed-loop system is
asymptotically stable if and only if N is not undefined and N = P,.

Caveat: Nyquist stability criterion is a necessary and sufficient condition!
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Loop stability analysis — Examples (I)

L(S) _ 10 . MNyquist Diagram
— 5 : . . :
(1+s) 1
4.
We have |
P,=0 N=0 X
the closed-loop system is thus E-E-
asymptotically stable. b

We can verify the result using :
Routh criterion. The characteristic 55 5 5 y 5 - m
polynomial is Real Axis

x(s) =104+ (1+s5)? =5>+2s5+11
and has the roots in the open left half plane.

[e]
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Loop stability analysis — Examples (ll)

1 0 . . ! Ng.fqluist Diaglram

(1—|—S)3 6F

L(s) =

We have
P,=0 N=-2

the closed-loop system is thus not
asymptotically stable. ab

Imaginary Axis
Lo

We can verify the result using

Routh criterion. The characteristic S0 0 > 4 5 g 10
polynomial is Real Axis

x(s) =10+ (14+5)° =5 +3s°+3s+11
and has two complex conjugate roots in the right half plane.

[ey]

the intersection of Nyquist plot with the real axis can be| ——
computed determining w,: £L(jw,;) = —180° and then
computing |L(jw,)|

Prof. Luca Bascetta - I POLITECNICO DI MILANO




Loop stability analysis (V)

We now introduce the second graphical criterion, the Bode stability criterion,
that is based on the Bode plots of the loop transfer function L(s).

The Bode stability criterion holds only if the following conditions are
satisfied:

» the loop transfer function L(s) does not have poles lying in the open right
half plane

* the magnitude Bode plot of the loop transfer function L(s) crosses the
0 dB-axis exactly once

Let’s first introduce the following definitions:
» crossover frequency w,, is the frequency w so that |L(jw)| = 1
 phase margin ¢,,, is defined as

Om = 180° — [ZL(jax)|

* loop gain y;, is the gain of the loop transfer function L(s)
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Loop stability analysis (VI)

The quantities we have just defined can be shown on the magnitude and
phase Bode plots of the loop transfer function.

Eode Diagram

T
N

A

107 107 107 10 10

Framanry (racdich
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Loop stability analysis (VII)

Bode stability criterion states that the closed-loop system is asymptotically
stable if and only if

Caveat: Bode stability criterion is a necessary and sufficient condition!

Bode stability criterion can be easily derived from Nyquist stability criterion
assuming P; = 0.
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Loop stability analysis — Examples (I)

10
L{s) = (1+s)?

« Applicability conditions hold
* u >0
 w,=~3rad/s

e ¢L(jw,) = —2arctan(3)
= —144°
* @y =180°— |£L(jw,)| = 36° >0

We conclude that the closed-loop
system is asymptotically stable.

20

10F

OF

-10F

Magnitue (dB)

10 10 10 10 10
Frequency (rad/s)

plot

You don’t need to analytically compute the crossover
frequency, just read it from the asymptotic magnitude Bode
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Loop stability analysis — Examples (ll)

10
L(S) = 3 20
(1+s)
10
« Applicability conditions hold .
* u >0 g
e w,~2rad/s g
o £L(jw,) = —3arctan(2) %-20
= —192° = a0
* ¢y, =180°—- |£L(jw,)| = —-18°< 0
40 R
We conclude that the closed-loop 501 U ]
system is not asymptotically stable. 10 10 10

Frequency (rad/s)
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Loop stability analysis (VIiI)

We call a LTI system a minimum phase system if:
» the gain is greater than zero

« all the poles lie in the closed left half plane

» all the zeros lie in the closed left half plane

For a minimum phase system the asymptotic phase Bode plot can be drawn

from the asymptotic magnitude Bode plot multiplying the slope of each
segment by 90°.

Caveat: if the magnitude Bode plot crosses the 0 dB-axis having a slope of
— 1, and there are no other poles/zeros 20

around the crossover frequency, the phase i 0
margin will be close to its asymptotic value g%
(900) -45]0_

This ensures that the closed-loop system _ F““d”
IS asymptotically stable. IR

1

10 10" 10
Frequency (rad/s)
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Loop stability analysis (IX)

Time delay is a system described by the following equation in time domain
y(t) =u(t—17)

its transfer function is
G(s)=e "

and its frequency response
G(jw) = e 7

analyzing this frequency response we obtain

G(jo)| = e 7| =1 “
£G(jo) = [e 77| = —07

=
i

Magnitude (dB)
Lo

0.5

107 10" 10 10 10
Freguency (radfs)

Fhase (deq)

10° 10 10°

Frequency iradfs)
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Loop stability analysis (X)

Assume that the loop transfer function is composed of a rational transfer
function and a delay

L(s) = L,(s)e™*"

The magnitude and phase of the frequency response are given by
L(jo)| = L (jo)|[e " = |L,(jo)]
/L(jw) = Z/L,(jo)+ Le 7" = /L. (jo) — 0T

asS a consequence
O, = O,

180°
/L(jo:)=ZL, (jo.)— DT — —

Phase decrement due to the delay
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Loop stability analysis — Example

10
L(s) =
) = Trs)a1109)°
« Applicability conditions hold

* u >0
e w,=~1lrad/s or

=T >0

20

10F

o
. 10 = aal
e £L(jw.) = —arctan (T) 30
1 180° % ok
— arctan 1)~ @t — S
~ —129° — 57°7 =0T
e @, =180°—|£L(jw,)| 40}
~ 51° —57°t Lop i i _ :
_5[:] i M PRI ST H | 2 H M | M M i 2 4 243
107 10" 10" 10"

Frequency (rad/s)
We conclude that the closed-loop

system is asymptotically stable for 1 < 0.89 s
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Loop transient performance analysis (I)

We will now analyze the following features that characterize the transient
response of a closed-loop system:

* response time, how quickly the closed-loop system responds to a
change in the set point

» oscillation damping, the response of the closed-loop system should be
overdamped or the oscillations should be characterized by a high
damping factor

» disturbance rejection, the control system ensures good set point tracking
even in the presence of disturbances

» control effort mitigation, the amplitude of the control signal should not be
excessively high

We will try to find a correlation between these features and the parameters
that characterize the stability of the closed-loop system.
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Loop transient performance analysis (Il)

Let's start from response time.

We usually think about response time as a measure to characterize, for
example, the step response in time domain.
Can we found an interpretation of this parameter in the frequency domain?

Consider a first order system (low-pass filter)

H(s)= —— T>0
) =17 ~

i iWH G

Magnitude (dB)

R AP WS

=20

Frequency (rad/s)
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Loop transient performance analysis (1)

5

i iWH G

Magnitude (dB)

Time Frequency (radfs)

The speed of the step response increases as the time constant T
decreases.

The speed of the step response increases as cutoff frequency wy = 1/T
Increases.
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Loop transient performance analysis (1V)

Consider now the transfer function from the set point to the controlled
variable of a closed-loop system

Y(s)
Yo(s)

We can assume, for this transfer function,
the behavior of a low-pass filter.

As you know, if N
F(io)|,p <3dB Vo dopo i IR DN

we can define the cutoff frequency -40
{@:|F(jo)|lap > —3dB} = [0, 0]

10

BRI R

= F(s)

Magnitude (dB)

Frequency (rad/s)

The cutoff frequency w; can thus reveal the closed-loop system response
time: increasing w; the response time decreases.
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Loop transient performance analysis (V)

We discovered a relation between the response time and the cutoff
frequency of the closed-loop transfer function F(s).

Can we now relate the response time to a feature of the loop transfer
function L(s)?

Consider again the closed-loop transfer function

L
F(s) = (5)
1+ L(s)
and its frequency response
. L(jo)
Fjo) = .
1+ L(jw)
Let’s introduce now the following approximation
. L(jow)| 1 Vo : |L(jo)| > 1
F(jo)| = iR I - I (i :
1+ L(jo)| |IL(Gw)| Yo:|Ljo)| <
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Loop transient performance analysis (VI)

If the assumptions of the Bode criterion hold we have

L1 o<
Flo)~ {|L<jw>| 0> o,

Is this approximation reliable?
Under witch assumptions?

Is the cutoff frequency well 30
approximated by the crossover
frequency?

Magnitude (dB)

Frequency (rad/s)
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Loop transient performance analysis (VII)

In order to answer to the previous doubts, we will study the behavior of the
closed-loop system transfer function around the crossover frequency

: IL(jor)| 1 1
F(jo:)| = : = ol —
[T+ L(jo:)| [1+e%[ |1+ cos(@)+jsin(¢c)
B 1
\/ L+ cos? (@) +2cos(¢c) +sin® (@)
B 1 B | B 1
V2(1+cos(9))  /2(1—cos(n))  2sin (%)
If @,,, = 90°
1 Cutoff frequency is
F 'a)c - = F 'a)c — —3dB |—well-approximated-by
| (J ) \/§ ‘ (J )‘dB crossover frequency
and if ¢,,, > 60° Cutoff frequency and | —

crossover frequency
have the same value

Fio) <1 = |F({jo)ls<0
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Loop transient performance analysis (VIII)

We can thus conclude that the closed-loop system can be approximated as:
e if¢p,, >50°+60°

1 4.6
F(S) ~ R — Ta] ~ —
1—|—5C .
e if @, <30°+40°
2
0) 4.6
F(s)~ ¢ = T, ~
(5) 52 4+ 2E .5+ 0? AT Ew,
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Loop transient performance analysis (1X)

If the closed-loop system is approximated by a second order transfer
function

(1)2

52 +2E 0.5 + 2
we still need to compute the damping factor.

We know that the magnitude of the second order approximation at the
crossover frequency IS equal to

F(jo.)| = 25

and the magnitude of the closed-loop transfer function at the crossover
frequency, instead, is equal to

F001= 5o

merging now these two relations we obtain

F(s) ~
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Loop transient performance analysis (X)

|F(ch)‘ 25 QSlIl(q)m) = 53111( 2 ) ~ 100

where the last approximation holds only if ¢,,, is expressed in degrees.

We can conclude that the closed-loop system

* response time

» oscillation damping

are related to the

» crossover frequency w,

e phase margin ¢,,

respectively (i.e., two features of the loop transfer function).
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Loop transient performance analysis — Example

T(e) — 100 We would like to sketch the step response
( ) _ S(l —|—O.0025s)2 of the closed-loop system

« we first plot the asymptotic magnitude Bode plot of L(s)

e we compute w, = 100 rad/s
e We compute ¢,,
100
m = 180° — | —90° — 2 arct —
0y arctan (40()) ‘
— 180° —[—90° —2-14°| = 62°
As @,, > 60° we can approximate the

closed-loop system with a first-order
transfer function

1
F(s)~ ——
()~ 10015

Prof. Luca Bascetta - I

Magnitude (dE)

20

OF
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40}
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Frequency (radfs)
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Loop transient performance analysis — Example

T(e) — 100 We would like to sketch the step response
(S) — S(l —|—O.00253)2 of the closed-loop system

e we compute w, = 100 rad/s
« We compute ¢,,

100
m = 1807 — | —90° — 2 arct —
o arctan (4()0)‘

— 180° — [—90° — 2. 14°| = 62°

As @,, > 60° we can approximate the
closed-loop system with a first-order
transfer function

1
F(s)~ ——
()~ 10015

Prof. Luca Bascetta - I
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we first plot the asymptotic magnitude Bode plot of L(s)
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Loop transient performance analysis (XI)

We now focus on disturbance rejection and control effort mitigation.

Let’s first analyze the effect of a |load disturbance d

O ¥
Yy )i_ > L(S) )-*-O+ Y >

The transfer function from the disturbance d to the controlled variable y is

D(s) _S(S) _ 1—|—L(S) <:|I Sensitivity function

The magnitude of the sensitivity function can be approximated by

S(jw)| = 1 ~ {|L(j1co)|' Vo : |L(jo)| > 1
1+L(jo)| 1 Vo:|L(jo) <1
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Loop transient performance analysis (XII)

If the assumptions of Bode criterion hold we have

1
S(j@) = —— )‘g{—wum O < O,

30

1 W > 0,

Disturbance harmonics whose

frequency is less than the
crossover frequency are attenuated

We thus conclude that

Magnitude (dB)

» the crossover frequency has to

be greater than the highest ol

disturbance harmonic we would reTiEEriER e TR
Iike to attenuate _SD- gt e i b ket PR F Y e b tatetated 00 et td ek h hddet TR N ek tatiaad SRt ed e AN A

 the higher the magnitude of L(jw) ™
for w < w,, the higher the attenuation
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Loop transient performance analysis

(X1

Consider now the effect of measurement noise n

O

Y

>

Y 50> L(s)

The transfer function from the noise n to the controlled variable y is

Y (s) L(s)

Ne) O =T <—

Complementary sensitivity
function

We already now that the magnitude of the complementary sensitivity

function can be approximated by

PO Loy ™

Prof. Luca Bascetta -

L(jw)] 1 Vo : |L(jo)| > 1
{|L(ja))] Vo : |L(jo)| < 1
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Loop transient performance analysis (XIV)

If the assumptions of Bode criterion hold we have

L1 o<
Flo)~ {|L<jw>| 0> o,

Noise harmonics whose
frequency is greater than the
crossover frequency are attenuated

We thus conclude that

» the crossover frequency has to
be less than the lowest
noise harmonic we would
like to attenuate

* the lower the magnitude of L(jw)
for w > w,, the higher the attenuation

Magnitude (dB)

Frequency (rad/s)
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Loop transient performance analysis (XV)

Consider now the control effort mitigation

d
ol R(s) H| G(s) F—0——

The transfer function from the set point y° to the control variable u is
Uls) =Q(s) = R(s) <}:: Control sensitivity function
YO(s) 1+ L(s)

The control sensitivity function represents, except for the sign, the transfer
function from d to u, and from n to u, as well.

The magnitude of the control sensitivity function should thus be as lower as
possible at all frequencies.
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Loop transient performance analysis (XVI)

The magnitude of the control sensitivity function can be approximated by

Q(jw)| = .
1+ L(jo)|
If the assumptions of Bode criterion hold we have

L IR(o) ;
2601 = i oa = { i)

Rio)| {|Gulw>| vo:
R(jo)| Vo

Rjw)|” o > @,

L(jo)| > 1
L(jo)| < 1

Should be as lower as
@), | possible beyond the
crossover frequency

Let's assume that |G| can be

approximated by a low-pass filter

If w. > w,; the magnitude of |1/G| can
be very high, and the magnitude of |Q|
Increases.

Magnitude (dB)

We thus conclude that

» the crossover frequency should not
be too high with respect to the
process response time (w;)
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Loop steady-state performance analysis (l)

We will now study the steady-state behavior of the closed-loop system in
terms of the error between the set point and the controlled variable.

We will assume the closed-loop system asymptotically stable (otherwise we
cannot have steady-state!).

In the analysis we will exploit the superposition principle (the net response
at a given place and time caused by two or more stimuli is the sum of the
responses which would have been caused by each stimulus individually),
considering the effects of each input individually.

As inputs we will consider steps, ramps and parabolic signals.

Caveat: you don’'t need to memorize any result, you just need to know how
to compute transfer functions and how to use the final value theorem!
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Loop steady-state performance analysis (lI)

Let’s first define the error
e(t) =y’(t) —y(t)

where is the error in the block diagram?

Y

(0]
;T

d
> R(s) F4 G(s) F—0—+—
n
n d
€s0—| R(s) FY| G(s) —=0 J ,

Prof. Luca Bascetta - I
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Loop steady-state performance analysis (lll)

Let’s start considering the error generated by the set point.
The transfer function from the set point to the error is

E 1
(s) _ _S(s)
Yo(s) 1+L(s)
The loop transfer function can be represented as
(1 Ti
L(S): H’L HI( —I—S )
SEL Hj (1 +STJ)

and observe that

limL(s) = lim e T () lim FL

s—0 s—0 $8L Hj (1 -+ STJ) s—0 §8L

Assuming that the closed-loop system is asymptotically stable we can now
apply the final value theorem to compute the steady-state error e,.
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Loop steady-state performance analysis (1V)

We have |
0o f— 1 p— 1 E j— 1 YO
¢w = lime(r) = limisE(s)] = lim [S1 T L(s) (S)]
] ] (8Lt
= lim |s—~Y“(s)| = lim Y?(s)
s—0 | 1+ 58_%, s—0 | 8L + Uy,

Let’'s compute now the steady-state error for different set point signals (step,
ramp, parabolic signal).
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Loop steady-state performance analysis (V)

y°(t) = Asca(t) )
SgL_l'l A SgL Ij gL < 0
_I%L&Jﬁu S]ZIE%{AS&JF“]:< 1+ur gL =0
A) \)
k t \ 0 gL Z 1
y°(t) = Aram(t) (
8L+l A ' §8L ";’: gr <0
o = lIm — lim |A =<{ = gr=1
s—0 | $8L + Uy, 52 s—0 | s8Ltl + Sy, %L a >2
\ L —
y°(t) = A par(t) (
SgL‘I'l A ' SgL (j: gL S 1
= lim = lim [A =< = gr=2
s—0 | $8L + Uy, §3 s—0 | s8L12 4 SZHL !'(L)L o >3
\ L —
Worthless!
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. B O
Loop steady-state performance analysis (V)

y°(t) = Asca(t)

,
g8L+1 A ' §8L fj gr <0
—lg% SEL + Uy S :lg% A58L+u = 9 1+uy gL =0
\) \)
k t \ 0 gL Z 1
y°(t) = Aram(t) (
SgL‘|‘1 A ' ¢8L ZO SL S 0
o = lIm — lim |A ={| = gr=1
s—0 | $8L + Uy, 52 s—0 | s8Ltl + Sy, %L S
\ L —

y°(t) = Apar(t)

(
&L+l A 8L = gr <1
_lg%|:sgL+ S3] :lgr(l) [A58L+2+S2 ]:< E gLZQ-
i M ’ He \ 0 8L Z 3

Increasing u; the error decreases
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Loop steady-state performance analysis (V)

y°(t) = Asca(t) )
SgL_l'l A SgL Ij gL < 0
—111’%|: 8L | ] :111'% |:A 8L |- ] :< 1 7 gLZO
S— S S S— A
HL IJ’L \ Iji_)u 8L Z 1

y°(t) = Aram(t)

8L+l A §8L ( ";’: gL <0
_hr%[gur ]zlin%[A p—— ]:<E gL =1
s—=0 1| S Ur, 52 s— ) + Sy, k 0 7 > 5

y°(t) = A par(¢) (

gL+l A 8L
o =lim | ——Z= | = lim [A— {4
s—0 | S8L + Uy, S s—0 | s8L12 4 SZHL L

Zero steady-state error

Prof. Luca Bascetta - I POLITECNICO DI MILANO




Loop steady-state performance analysis (VI)

Consider now the error generated by the disturbance d.
The transfer function from the disturbance to the error is

E(s |
S S
D(s)  1+L(s)
It's the same transfer function, except for the sign, we have just analyzed,
all the previous results hold!

Finally, consider the error generated by the noise n.
The transfer function from noise to error is

E L
() _ L)
N(s) 1+L(s)
and we have
= lime(t) = lim [sE(s)] = lim |s Lis) N(s)
Coo = o s—0 s—0 | 14+ L(s)
HL
1 s8L _ 1 HLS
ST R T LgL‘|’NL ( )]
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Loop steady-state performance analysis (VII)

n(t) = A sca(t)

A L =0
emzlim[ HLS —]zlim[A HL ]:{ BT

If the sensor is affected by bias, the steady-state error cannot be less than
sensor error
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Control system design (I)

We now have all the tools required to address the design of the control
system.

The design will be based on the Bode stability criterion, as a consequence
the loop transfer function L(s) has to satisfy the assumptions of the Bode
criterion.

Caveat: The design method we are introducing cannot be used with
processes with poles in the open right half plane.

First of all, we can reformulate the controller requirements as follows:

e asymptotic stability om >0
* robust stability and oscillation damping Om > Om
e response time W, = W,
e steady-state performance lew| < €w

o further requirements

transient requirements steady-state requirements
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Control system design (ll)

The controller design problem is usually divided into two steps:

» steady-state design
- assumes that the closed-loop system is asymptotically stable
- considers only the steady-state performance

e transient design

- considers the remaining specifications (requirements on crossover
frequency, phase margin, etc.)

Following this methodology, we can factor the controller transfer function as

R(S) — R, (S)RQ(S) = R (S) = % RQ(S) — 1[1118 ij;fj))

We can observe that
* R;(s), determines steady-state performance
* R,(0) =1, and R,(s) does not contribute to steady-state performance
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Control system design (lll)

Design rules:
« steady-state design (R;(s))

- we choose the minimum value for g that fits with the steady-state
requirements

- once gr has been selected, we choose the minimum value for up that
fits with the steady-state requirements

- If we can satisfy steady-state requirements without choosing a

specific value for up, the selection of this parameter is done during
transient design

transient design (R, (s))

- we select zero/pole time constants with a graphical method that aims
at shaping the loop transfer function Bode plot so as to satisfy
transient requirements

Let’s see the controller design procedure with an example.
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Control system design — Example (I)

_d H(s)
Yy’ . e u ] y

;_O > R(S) > G(S) »O—F—>

50 5
Gls) = (140.1s)(145)(1+ 10s) H(s) = 140.01s

Requirements:

* |ew| < 0.025when y°(t) = 10 sca(t) and d(t) = +sca(t)
e w,=1rad/s

* Yy =60°
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Control system design — Example (ll)

Steady-state design

|
o, = lim[sEy0 (s)] = i YO(s)| = li
Cooy sgr(l) [S Y (S)] SE;I(I) lsl —I—L(S) (S)] Sgr(l)
10 _
im | 5| _ Jirsog 87 =0
s—0 | $8R 4+ S0Ug 0 gr > 1
. [ —H(s) .l
ooy = mlsEs(9] = Iy [ 705006 =l
5 _
clim | —> | Z [ Fresome 88 =0
s—0 | s8R + S50UR 0 gr > 1

Steady-state requirement: |e,| < 0.025

We can select g = 0

Prof. Luca Bascetta - I
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Control system design — Example (llI)

We have
10 5 15

15500 1+50ux 1+ 501

€| = ‘emyo + oo, | < ‘emyo + | €a, | =

and considering the requirements

15 15 —0.025
<0.025 = > ~
1+50ug = Hr = =725

The steady-state design can be thus concluded with

Ur=20 = Ri(s)= 2R _ 20

S8R

12
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Control system design — Example (V)

Transient design
The loop transfer function can be rewritten as

hL(S) = Ri(s)R2(s5)G(s) = Ra(s)La (s)

Ly(s) = Ri(s)G(s) =

1000
(140.1s)(1+s)(1+ 10s)

For the first trial let's assume that 60
Ry(s)=1 = L(s)=Ly(s)

Eimn e
a.)c>>l Dot

On <0 WG

kagnitude (dB)

We need a second trial with a 40 """
dynamic regulator. B IR

—60 M P i MR T | M s L aais i M T
107 107 10° 10" 10°

Frequency [radis)
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Control system design — Example (V)

Remember that, if L(s) is a minimum phase system, crossing the 0 dB-axis
with slope —1 and having no further zeros/poles around the crossover
frequency, the phase margin is close to 90°.

Let’s proceed with the design shaping L(s) in such a way that it crosses the
0 dB-axis with slope —1 and...

We can proceed as follows:

1. divide the magnitude Bode plot in three parts: low frequency, high
frequency, around the crossover frequency

2. start shaping the magnitude Bode plot of L(s) from the part around the
crossover frequency

We will now formalize a set of design rules.
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Control system design — Example (VI)

Design rules:

[=)]
=]

I
=

o]
=]

Magnitude (dB)
=

-60

107" 10” ‘ 2

107" 10" 10
Frequency (rad/s)

10
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Control system design — Example (VI)

Design rules:

1. draw a line, having slope —1, crossing the 0 dB-axis at a crossover
frequency greater or equal to the minimum value that satisfies the
requirements

60
| PR Er R trrr BN E s, A B ST IR BT e

20F - I.I.'.'.'II':.. jar . .'.Z.'.'.I.'.E I..'.'I.'I.":.. vaed .'.'..'.'..II.I TR

Magnitude (dB)
=

-60

107" 10” ‘ ¢

107" 10" 10
Frequency (rad/s)

10
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Control system design — Example (VI)

Design rules:
2. low-frequency part

- |L| and |L;| must have the same slope
otherwise you are modifying the controller type selected in steady-state design

If the steady-state design set a constraint on the controller gain, then
IL| = |L4]
otherwise you are modifying the controller gain selected in steady-state design
60

7| TR Er oy SR trrr BN R, RS rrr BN BT e

20F - I.I.'.'.'II':.. jar . .'.Z.'.'.'..'.E I..'.'I.'IZ':.. vaed .'.'..'.'..II.I TR

Magnitude (dB)
=

-60

107" 10” ‘

107" 10" 10 :

Frequency (rad/s)

10
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Control system design — Example (VI)

Design rules:
2. high-frequency part

- the absolute value of the slope of |L| plot must be greater or equal to
the one of |L,| plot
otherwise the regulator could have more zeros than poles, being an acausal system
L] = |L4]

to guarantee control effort mitigation

60
T TR Er o SRt rrr BRI E s, SRS rrr BN BT e

20F - I.I.'.'.'II':.. jar . .'.Z.'.'.I.'.E I..'.'I.'IZ':.. vaed .'.'..'.'..II.I TR

Magnitude (dB)
=

-60

107" 10” ‘

107" 10" 10 ‘

Frequency (rad/s)

10
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Control system design — Example (VII)

From the magnitude Bode plot we can now extract the expression of the
loop transfer function 60

1000

(I+om) 0+ L > \El
1000
(14500s) (1+0.1s)*

and CompUte the phase margln in - IIZIZZ; - ZZIZIIE - IIZZZZI_ - ZZZIII_I NooN DD
Order to Verlfy the trans|ent Ty | R R e B o e R R EE R e ks RERE AL . gy
reguirements

Magnitude (dB)
=

-80 - ._ i_1 i.:,
10 10 10 10 10

(DC ~ 2 ]’ad / S Frequency (rad/s)
@ = 180° — |—arctan(2/0.002) — 2 arctan(2/10)|
= 180° — [—90° —2-11°| = 68°

All the requirements have been fulfilled.
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Control system design — Example (VIII)

We can now compute R, (s)

Ry(s) = L) _ 1000 (1+0.15) (1+5) (1+ 105)
L (s) (1+5003‘)(1+0.13)2 1000
(14s)(1+10s)

(1+500s)(1-+0.1s)
and, finally, the expression of the regulator transfer function

(1+s)(1410s)
(1+500s)(1+40.1s)

R(s) =Ri(s)Rz(s) =20
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Control system design (1V)

Among the further requirements we previously mentioned, there are the
disturbance attenuation requirements.

The feedback is required to attenuate load disturbances and measurement
noises characterized by sinusoidal signals or any other signal expressed as
Fourier series or Fourier integral.

These requirements give rise to further constraints on the frequency
response of the loop transfer function we shape in the transient design.

We will now study how to formalize these constraints and how to take them
Into account during transient design.
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Control system design (V)

Given a load disturbance d(t), whose non negligible harmonics span the
range [0, w4« ], the control system should attenuate this disturbance on the
controlled variable by a factor A (A > 1).

First, the transfer function from d to y is given by
Y(s 1
(s) _ S(s) —
D(s) 1+ L(s)
and the corresponding frequency response by

¥(0) = 77570

Assuming the closed-loop system asymptotically stable, we can apply the
sinusoidal response theorem. At steady-state, the output generated by the
load disturbance has amplitude

1
1+L(jw)

D

WO < Wmax
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Control system design (VI)

Remembering that the attenuation factor is related to the ratio between the
output and input amplitudes, we obtain the following constraint

1 <1
1+ L(jw)

A

assuming that w,,,, < w, the constraint can be simplified as
L(jo) > A

O <Wmax

|w<wmax

This constraint is equivalent to a
forbidden region in the magnitude dB
Bode plot of the loop transfer _—=——
function.

I

]

Winazx
Frequency (rad/s)
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Control system design (VIl)

Given a measurement noise n(t), whose non negligible harmonics span the
range [wmin, +90], the control system should attenuate this disturbance on
the controlled variable by a factor A (A > 1).

First, the transfer function from n to y is given by

Y L
5) - L
N(s) 1+ L(s)
and the corresponding frequency response by
. L(jo) .
Y = — ~—N

Assuming the closed-loop system asymptotically stable, we can apply the
sinusoidal response theorem. At steady-state, the output generated by the
measurement noise has amplitude

L(jo)
1+ L(jo)

N

> Wppin
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Control system design (VIlI)

Remembering that the attenuation factor is related to the ratio between the
output and input amplitudes, we obtain the following constraint

L{jo)
1+ L(jo)

<1
A

D> Wyyin

assuming that w,,,;, > w. the constraint can be simplified as

IL(jo)

- 1
A

This constraint is equivalent to a
forbidden region in the magnitude

Bode plot of the loop transfer

function.

Magnitude (dB)
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Wmin
Frequency (rad/s)

POLITECNICO DI MILANO




Feedforward compensation (l)

Though the feedback controller is able to attenuate load disturbances and
measurement noise, when disturbances are measurable we can try to
compensate them.

Disturbance compensation has the advantage, with respect to the
attenuation action exerted by feedback, that the compensator exploits the
measured disturbance to act directly on the control variable, while feedback
has to wait the effect of the disturbance on the controlled variable.

ld C(s) ‘_ld

H(s) H(s)
U G(s) =0 Ul G(s) Jﬁ I
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Feedforward compensation (II)

We design the compensator in such a way that it cancels out the effect of
the disturbance on the controlled variable. This is equivalent to make the
transfer function from d to y identically zero

Y(s)
=H(s)+C(s)G(s) =0
pis) —H) +C6E()
Solving with respect to the compensator transfer function we obtain
H(s
C(s) = — (5)
G(s)
This relation is a guideline to design C(S) d
the compensator. In fact, in many
situations it cannot be directly applied.
y app H(S)
For example when:
e G(s)is anon-minimum phase l
t fer functi A
rans.er unction U G(S) & y
e ((s)is an a-causal system
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Feedforward compensation (1)

We can consider the following significant situations:
» step disturbance

C(S) = Uc=— H(O) Design a parametric
G(O) compensator and select
the parameter in such a
way that the constraint at

» sinusoidal disturbance at frequency @ = is satisfied
. H(j®) /

C(s) : C(jo)= T Glio)

« disturbance with harmonics in the frequency range [0, @]

C(s) : C(] )—% o< ®
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Feedforward compensation (1) .

We can consider the following significant situations:
» step disturbance

C(S) . . H(O) Design a compensator
— Hc= G(O) that approximates the

ideal one until frequency
« sinusoidal disturbance at a frequency w @

C(s) C(J(D)HG%](?;

e disturbance with harmonics in the frequency range [0, @

Cis) : Cjo)=———F 0<O

Prof. Luca Bascetta - I POLITECNICO DI MILANO




Feedforward compensation (V)

Let’s now add the compensator to the standard feedback architecture.

The equation to design the compensator is now
Y(s) H(s)+C(s)G(s)
D(s)  1+R(s)G(s)

H(s)
G(s)

=0 — C(s) = —

Caveat: The feedback controller and the compensator can be designed
iIndependently!
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Feedforward compensation (V)

The same philosophy can be applied to the set point, in order to improve the
tracking performance of the closed-loop system.

> C'(s)

J _;c|>_> R(s) F—&Ys| G(s) 4~
The transfer function from y° to y is

Y(s) R(s)G(s)+C(s)G(s)

YO(s) 14+ R(s)G(s)
We design the compensator to have a unitary transfer function from y° to y
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Feedforward compensation (VI)

As we have seen for the disturbance compensator, this relation is a
guideline for the design.

An example of a more realistic solution is the following
1
C(S) . C(] ):— W < Wpax
G(jo)
where the compensator is designed to replicate the ideal one on a desired
range of frequencies.
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Feedforward compensation (VII)

Another common feedforward action to improve set point tracking is pre-
filtering.

—4 1 C(s) :T > R(s) F| G(s)
Remember that the transfer function from y° to y is

Vo) o0 ROGE) oo
vois) T REGE) W)

Two examples of pre-filter are:
» a pre-filter to enforce zero steady-state error

! V) |
~ F(0) 7o(s) |

Prof. Luca Bascetta - I POLITECNICO DI MILANO




Feedforward compensation (VIII)

» a pre-filter to increase the crossover frequency

1+s/@, oo — Y(s) = 1
l—l—S/COb b ¢ YO(S) - 1—|—S/(Ob

C(s) =
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Feedforward compensation (IX)

We can now imagine a control architecture where set point pre-filtering and
compensation coexist.

= Ca(s)

Oy (s)—o—>| R(s) 0> G(s)

Y
 J

This architecture allows to impose to the closed-loop system a desired
behavior, imposing that the y° — y relation behaves like a desired transfer
function F°(s) (reference model).

Consider the transfer function from y° to y
Y(s) _ Ci(s)R(s) +Ca(s)
Yo(s) 14+R(s)G(s)

G(s)
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Feedforward compensation (X)

We can obtain the desire
Y(s)
Yeo(s)

selecting

Ci(s) = F°(s) Co(s) :FO(S)G_I(S)

— F°(s)

The requirements for the reference model are:

e unitary gain

« relative degree greater or equal to the relative degree of G(s)
* include the zeros of G(s) that lie in the right half plane
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Cascaded control (1)

In many real applications the process can be separated into two
subsystems, thanks to an intermediate variable v that can be measured.

The system can be thus represented as a series of two transfer functions
with a possible disturbance in between.

d

Gy (5) =02+ Ga(s) L

This subdivision can be exploited to simplify the design (and improve the
performance of) the control system if:

* (4 IS minimum phase and G, is hon minimum phase

 (, and G, are minimum phase systems, but the response time of G, is
definitely greater than the response time of G,

These conditions are satisfied, for example, when G, is the actuator and G,
the process.
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Cascaded control (ll)

When one of the previous conditions holds we can adopt a control
architecture called cascaded control.

d

y_;o_> RQ(S) v >0 >R1(8) u Gl(S)—>OI—U—> G2(3) J

Y

 J

The inner regulator R;:

* is designed considering only the inner system G, (s)

e ensures set point tracking at maximum allowable crossover frequency
* ensures high-bandwidth disturbance rejection

The outer regulator R,:

* has a crossover frequency definitely lower than the inner loop

» the inner loop is seen by the outer regulator as a unitary transfer function
e is designed considering only the outer system G, (s)

Prof. Luca Bascetta - I POLITECNICO DI MILANO




PID regulators (I)

PID regulators are characterized by the following control law

u(t) = Kpe(t) + K; te(’c)d’c—FKQde(z)

o P
Uz —

Derivative gain

_ Integral gain
or equivalently Proportional gain
1 [t de(t)
u(t) =Kp |e(t)+ —/ e(t)dt+Tp ()
I Jo dr |
where the integral time and the derivative time are defined as
K K
T, = P T = b
K; Kp

PIDs are the most common industrial regulators, in particular in mechatronic
applications.

The most common combination of PID actions are P, PD, PI, and PID.
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PID regulators (lI)

Why are PIDs so common in industrial applications to be called industrial
regulators?

The most important reasons of PIDs’ success are:

» they can be easily implemented using different technologies (hydraulic,
pneumatic, electronic)

» they allow to control with good performance many different industrial
processes

» they have been standardized (cheapness and reliability)
» they can be easily tuned (only 3 parameters to be selected)
» well-established auto-tuning techniques exist

In the following we will study both analytical tuning rules (based on Bode
plots) and auto-tuning techniques.
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PID regulators (lll)

As any LTI system, PIDs can be represented by a transfer function

E(s) 1 TiTps® + Tys + 1
R — — K ] + — T — K
(5) UGs) p( Tt D) P T

In the present form a PID is an a-causal system (has more zeros than
poles), due to the presence of the derivative action.

In order to make the system causal an high frequency pole is usually added
to the derivative action.

Apart from making the system causal, this high-frequency pole has the
following characteristics:

e it acts as a low-pass filter on the derivative action
* it has a negligible influence on the tuning of the controller parameters
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PID regulators — Example (I)

Let’s first introduce, with an example, a tuning methodology based on Bode
plots.

Yo e R(s) | (s) Y

Y
 J

G(s)=0.1
(5) (11 55)(1+ 20s)

Requirements:

* |ewl =0 when y°(t) = sca(t)

* Py =40°

* maximize w,

Prof. Luca Bascetta - I POLITECNICO DI MILANO




PID regulators — Example (ll)

We can write the PID transfer function as follows
(1+sT1) (14 5T)
R(s) = ur

and select the zeros of the PID so as to cancel the poles of the process,
obtaining

1 1+2 1
R(s) = pp 220 ) = R(5)G(s) = 2 MR
) S
The crossover frequency is thus
a)CZO.llJ,R
and the phase margin
180° 180°
O = 180° — | —90° — @, T - = 90° —0.3Ug - > 40°

Solving the previous inequality we can find the maximum value of the
crossover frequency that is compatible with the other specifications.
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PID regulators — Example (1)

Solving with respect to the PID gain we obtain

50w
< =2.91
HR = 03-180°
We can now write the transfer function of the regulator
1+5s)(1+20 100s% 4255+ 1 K
R(s) = 29UV H205) ) (1005 #2554 1 _ o K1, g
) ) )

and determine the corresponding parameters

Kp=725 K;=29 Kp=290
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PID regulators (I1V)

We will now introduce auto-tuning rules, a set of techniques that allow to
automatically determine the regulator parameters using the information
obtained through a few experiments on the process.

Auto-tuning rules do not require any knowledge about the process model (or
the model is implicitly identified from experimental data).

There are a huge number of different auto-tuning rules in the scientific
literature and in commercial products.

We will introduce two classical tuning rules developed in 1942 by John
Ziegler and Nathaniel Nichols.
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PID regulators (V)

We start from the so called “closed-loop” rule.
The rule is composed of the following steps:

1. the regulator is started with all the gains (proportional, integral,
derivative) set to zero

2. the proportional gain is slightly increased and a step response is
performed

3. the proportional gain is continuously increased and the step response
experiment repeated, until undamped oscillations appear in the
controlled variable (K is the proportional gain that causes the
undamped oscillations)

4. the period T of the oscillations is measured

5. PID parameters are
selected following a table KP_ TI TD
P 0.5Kp

Pl 0.45Kp T/1.2
PID 0.6Kp T/2 T/8
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B O
PID regulators (VI)

We conclude the “closed-loop” rule with some observations:

» there are systems that never generate undamped oscillations, the rule
does not work with these systems

In practice, bringing a system close to its stability limit is usually
dangerous and not acceptable
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PID regulators (VII)

The “open-loop” rule is composed of the following steps:
1. a step response is performed on the process (open-loop experiment)

2. if the step response is non oscillating and monotonically increasing, we
can draw the tangent to the step response at the inflection point and
compute the following parameters (graphically or numerically)

a. gainu,givenby y/u
b. T and T, from the intersection of

the tangent with the x-axis and —
the steady-state line A

3. PID parameters are
selected following a table

P T/HT 72 I U S

PI 09T/ut 37
PID 12T/ut 2t 0.57

time
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PID regulators (VIII)

We conclude the “open-loop” rule with some observations:

» if the step response is oscillating, or it is not monotonically increasing, or
it does not have an inflection point, the rule cannot be applied

* in practice, operating a process in open-loop or performing a step
response is not always acceptable
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