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This part introduces the fundamentals of classic control theory. We will 
focus on the design of SISO regulators in the frequency domain.

The main topics we will face are:
• frequency response
• introduction to control systems
• loop stability analysis
• loop transient performance analysis
• loop steady-state performance analysis
• control system design
• feedforward compensation
• cascaded control
• PID regulators
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Given a general LTI dynamical system, represented by the transfer function 
𝐺𝐺(𝑠𝑠), let’s consider the sinusoidal response.

If 𝐺𝐺(𝑠𝑠) is asymptotically stable, in steady state sinusoidal inputs generate 
sinusoidal responses of the same frequency

Frequency response (I) 3
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The frequency response of a system, whose transfer function is 𝐺𝐺(𝑠𝑠), is

a complex function of the real variable 𝜔𝜔.

A few remarks:
• the frequency response is the transfer function evaluated along the 

positive imaginary axis
• 𝜔𝜔 is called frequency
• the frequency response can be defined for stable and unstable LTI 

systems
• the sinusoidal response theorem holds only for asymptotically stable LTI 

systems

The frequency response is a complex function, how can we plot it?
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We can plot separately the absolute value and the argument (Cartesian 
plots) or we can plot the curve on the complex plane (Polar plots).

Frequency response (III) 5
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Let’s start from Cartesian plots and, in particular, from Bode plots.

In Bode plots, the frequency response absolute value and argument are 
plotted in two separate Cartesian plots.
In both plots the 𝑥𝑥-axis (frequency axis) is a logarithmic axis.

Frequency response (IV) 6
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Let’s start from Cartesian plots and, in particular, from Bode plots.

In Bode plots, the frequency response absolute value and argument are 
plotted in two separate Cartesian plots.
In both plots the 𝑥𝑥-axis (frequency axis) is a logarithmic axis.
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Let’s start from Cartesian plots and, in particular, from Bode plots.

In Bode plots, the frequency response magnitude and argument are plotted 
in two separate Cartesian plots.
In both plots the 𝑥𝑥-axis (frequency axis) is a logarithmic axis.

In both plots the 𝑦𝑦-axis is a linear axis.
We will call both plots semi logarithmic plots, and draw it on semi 
logarithmic paper.

Frequency response (IV) 8
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In the magnitude plot the 𝑦𝑦-axis is a linear axis.
The absolute value of the frequency response is plotted in decibel
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In the phase plot the 𝑦𝑦-axis is a linear axis.
The argument of the frequency response is plotted in degrees.
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For control system analysis and design we will use the asymptotic Bode 
plots.
Asymptotic Bode plots are an approximation of Bode plots that can be 
easily manually drawn.

We will now introduce the rules to draw asymptotic Bode plots.
The rules make reference to the gain-time constant form

Frequency response (VII) 11
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Magnitude plot

1. For 𝜔𝜔 → 0, the plot starts with a line having slope −𝑔𝑔 and going through 
point 𝜔𝜔 = 1 rad/s, 𝐺𝐺 𝑑𝑑𝑑𝑑 = 𝜇𝜇 𝑑𝑑𝑑𝑑.

2. At every frequency corresponding to 𝑝𝑝 real poles (zeros), slope 
decreases (increases) of 𝑝𝑝 units.

3. At every frequency corresponding to the natural frequency of 𝑝𝑝 complex 
poles (zeros), slope decreases (increases) of 2𝑝𝑝 units.

4. For 𝜔𝜔 → ∞, the slope of the plot equals the difference between the 
number of zeros and the number of poles of the transfer function.

In asymptotic Bode plots slopes are multiples of 20 dB/decade (slope 2 
means 40 dB/decade, slope -3 means -60 dB/decade)

Frequency response (VIII) 12
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Phase plot

1. For 𝜔𝜔 → 0, the plot starts with a line parallel to the 𝑥𝑥-axis and crossing
the 𝑦𝑦-axis at ∠𝜇𝜇 − 𝑔𝑔90°.

2. At every frequency corresponding to 𝑝𝑝 real zeros in the left half plane or 
𝑝𝑝 real poles in the right half plane, the phase increases of 𝑝𝑝90°

degrees.

3. At every frequency corresponding to 𝑝𝑝 real zeros in the right half plane 
or 𝑝𝑝 real poles in the left half plane, the phase decreases of 𝑝𝑝𝑝𝑝°

degrees.

4. At every frequency corresponding to the natural frequency of 𝑝𝑝 complex 
zeros in the left half plane or 𝑝𝑝 complex poles in the right half plane, the 
phase increases of 𝑝𝑝180° degrees.

5. At every frequency corresponding to the natural frequency of 𝑝𝑝 complex 
zeros in the right half plane or 𝑝𝑝 complex poles in the left half plane, the 
phase decreases of 𝑝𝑝𝑝𝑝𝑝° degrees.

Frequency response (IX) 13
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Polar plots are the other way to plot frequency response.

Polar plots are the image of the complex number 𝐺𝐺(j𝜔𝜔) for 𝜔𝜔 ∈ [0,∞).

We will see how polar plots can be drawn, deriving from Bode plots how the 
magnitude and phase of 𝐺𝐺(j𝜔𝜔) change as 𝜔𝜔 changes.

Caveat: if the transfer function 𝐺𝐺(𝑠𝑠) has poles on the imaginary axis its polar 
plot tends to infinity along asymptotes whose equations can be analytically 
computed.

Frequency response (X) 15
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The sinusoidal response theorem can be easily extended to general 
periodic or a-periodic input signals using Fourier series and Fourier integral.

Let’s start from periodic input signals

that can be represented as series of sinusoidal signals as

If 𝐺𝐺(𝑠𝑠) is asymptotically stable, in steady state periodic inputs generate 
periodic responses of the same fundamental frequency

Frequency response (XI) 17
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Consider an a-periodic input signal

that can be represented as integral of sinusoidal signals as

If 𝐺𝐺(𝑠𝑠) is asymptotically stable, in steady state a-periodic inputs represented 
as a Fourier integral generate a-periodic responses that can be represented 
as a Fourier integral

Frequency response (XII) 18
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Using the sinusoidal response theorem and its extensions based on Fourier 
series and Fourier integral we can compute the response to any sinusoidal, 
periodic or a-periodic signal.

Intuitively, the sinusoidal response theorem states that sinusoidal harmonics 
are changed in amplitude and phase by the dynamical system, depending 
on the system frequency response.

In view of this interpretation, an asymptotically stable LTI system acts as a 
filter on input signals: some harmonics are left unchanged, other are 
amplified and other are attenuated.

There are many different filters, here we will describe only the low-pass filter 
that has important applications in control system analysis and design.

Frequency response (XIII) 19
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A low-pass filter is an asymptotically stable LTI system whose frequency 
response has the following magnitude Bode plot

If

we can define the cutoff frequency 𝜔𝜔𝑏𝑏 and the passband

Frequency response (XIV) 20
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A general feedback control system can be represented by the following 
block diagram

Introduction to control systems (I) 21
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Assuming that all the components can be described by linear systems, the 
block diagram can be drawn introducing the transfer functions

and simplifying the block diagram

Introduction to control systems (II) 22
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Finally, the control system is represented by the following block diagram

where

is the transfer function of the process including actuators and sensors.

In the problem we will study, the goal will be the design of the controller 
transfer function 𝑅𝑅(𝑠𝑠) given the system transfer function 𝐺𝐺(𝑠𝑠).
In a real problem the control engineer has to model the process and select 
sensors and actuators as well.

Introduction to control systems (III) 23
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The design of the control system is driven by a set of requirements 
specification.
The main requirements are:
• asymptotic stability (nominal and robust)
• steady-state performance (steady-state error)
• transient performance (response time, disturbance rejection, oscillation 

damping)
• control effort mitigation

We will first study how to analyze a closed-loop system, given the controller 
transfer function 𝑅𝑅(𝑠𝑠).
Then control system design techniques based on Bode plots will be 
discussed.

Introduction to control systems (IV) 24
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We start analyzing the stability of the closed-loop system.
Given the block diagram

to analyze the system stability we can neglect disturbances and introduce 
the loop transfer function

and the block diagram can be simplified as follows

We will assume 𝐿𝐿(𝑠𝑠) the transfer function of a strictly proper LTI system.

Loop stability analysis (I) 25
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The loop transfer function can be expressed as

The transfer function from the set point 𝑦𝑦𝑜𝑜 to the controlled variable 𝑦𝑦 is, 
instead, given by

The poles of this transfer function are the poles of the closed-loop system, 
we can thus define a characteristic polynomial of the closed-loop system as

We conclude that the closed-loop system is asymptotically stable if and only 
if all the roots of the characteristic polynomial lie in the open left half plane.

Loop stability analysis (II) 26
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Caveat: if pole-zero cancellations occur in the product 𝑅𝑅 𝑠𝑠 𝐺𝐺(𝑠𝑠) and these 
poles/zeros lie in the closed right half plane, the closed-loop system cannot 
be asymptotically stable (there is an hidden dynamics that is not 
asymptotically stable).

The analysis of the characteristic polynomial can be used to assess the 
stability of the closed-loop system, but it does not represent a viable 
solution for control design purposes (i.e., to select 𝑅𝑅 𝑠𝑠 in such a way that 
the closed-loop system is asymptotically stable).

For this reason we will now introduce two graphical methods to assess the 
stability of a closed-loop system.

Loop stability analysis (III) 27
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Nyquist stability criterion is a graphical technique to determine the stability 
of a closed-loop system analyzing the frequency response of the loop 
transfer function.

Let’s first introduce the following definitions:
• Nyquist plot, a closed curve constituted by the Polar plot of the loop 

transfer function 𝐿𝐿(𝑠𝑠) (the curve is oriented in the direction of increasing 
𝜔𝜔) and its symmetric with respect to the real axis

• 𝑃𝑃𝑑𝑑, number of poles of 𝐿𝐿(𝑠𝑠) lying in the open right half plane
• 𝑁𝑁, number of plot’s encirclements of −1; we consider clockwise 

encirclements to be negative and counterclockwise encirclements to be 
positive (if Nyquist plot crosses the real axis at −1, 𝑁𝑁 is undefined)

Nyquist stability criterion states that the closed-loop system is 
asymptotically stable if and only if 𝑁𝑁 is not undefined and 𝑁𝑁 = 𝑃𝑃𝑑𝑑.

Caveat: Nyquist stability criterion is a necessary and sufficient condition!

Loop stability analysis (IV) 28
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We have

the closed-loop system is thus
asymptotically stable.

We can verify the result using
Routh criterion. The characteristic
polynomial is

and has the roots in the open left half plane.

Loop stability analysis – Examples (I) 29
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We have

the closed-loop system is thus not
asymptotically stable.

We can verify the result using
Routh criterion. The characteristic
polynomial is

and has two complex conjugate roots in the right half plane.

Loop stability analysis – Examples (II) 30

the intersection of Nyquist plot with the real axis can be 
computed determining 𝜔𝜔𝜋𝜋:∠𝐿𝐿 j𝜔𝜔𝜋𝜋 = −180° and then 
computing 𝐿𝐿(j𝜔𝜔𝜋𝜋)



Prof. Luca BascettaProf. Luca Bascetta

We now introduce the second graphical criterion, the Bode stability criterion, 
that is based on the Bode plots of the loop transfer function 𝐿𝐿(𝑠𝑠).

The Bode stability criterion holds only if the following conditions are 
satisfied:
• the loop transfer function 𝐿𝐿(𝑠𝑠) does not have poles lying in the open right 

half plane
• the magnitude Bode plot of the loop transfer function 𝐿𝐿(𝑠𝑠) crosses the 

0 𝑑𝑑𝑑𝑑-axis exactly once

Let’s first introduce the following definitions:
• crossover frequency 𝜔𝜔𝑐𝑐, is the frequency 𝜔𝜔 so that 𝐿𝐿(j𝜔𝜔) = 1
• phase margin 𝜑𝜑𝑚𝑚, is defined as

• loop gain 𝜇𝜇𝐿𝐿, is the gain of the loop transfer function 𝐿𝐿(𝑠𝑠)

Loop stability analysis (V) 31
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The quantities we have just defined can be shown on the magnitude and 
phase Bode plots of the loop transfer function.

Loop stability analysis (VI) 32
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Bode stability criterion states that the closed-loop system is asymptotically 
stable if and only if

Caveat: Bode stability criterion is a necessary and sufficient condition!

Bode stability criterion can be easily derived from Nyquist stability criterion 
assuming 𝑃𝑃𝑑𝑑 = 0.

Loop stability analysis (VII) 33
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• Applicability conditions hold
• 𝜇𝜇𝐿𝐿 > 0
• 𝜔𝜔𝑐𝑐 ≈ 3 𝑟𝑟𝑟𝑟𝑟𝑟/𝑠𝑠
• ∠𝐿𝐿 𝑗𝑗𝜔𝜔𝑐𝑐 = −2 arctan 3

= −144°
• 𝜑𝜑𝑚𝑚 = 180° − ∠𝐿𝐿 𝑗𝑗𝜔𝜔𝑐𝑐 = 36° > 0

We conclude that the closed-loop
system is asymptotically stable.

Loop stability analysis – Examples (I) 34
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• Applicability conditions hold
• 𝜇𝜇𝐿𝐿 > 0
• 𝜔𝜔𝑐𝑐 ≈ 2 𝑟𝑟𝑟𝑟𝑟𝑟/𝑠𝑠
• ∠𝐿𝐿 𝑗𝑗𝜔𝜔𝑐𝑐 = −3 arctan 2

= −192°
• 𝜑𝜑𝑚𝑚 = 180° − ∠𝐿𝐿 𝑗𝑗𝜔𝜔𝑐𝑐 = −18° < 0

We conclude that the closed-loop
system is not asymptotically stable.

Loop stability analysis – Examples (II) 35
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We call a LTI system a minimum phase system if:
• the gain is greater than zero
• all the poles lie in the closed left half plane
• all the zeros lie in the closed left half plane

For a minimum phase system the asymptotic phase Bode plot can be drawn 
from the asymptotic magnitude Bode plot multiplying the slope of each 
segment by 90°.

Caveat: if the magnitude Bode plot crosses the 0 𝑑𝑑𝑑𝑑-axis having a slope of 
− 1, and there are no other poles/zeros
around the crossover frequency, the phase
margin will be close to its asymptotic value
(90°).
This ensures that the closed-loop system
is asymptotically stable.

Loop stability analysis (VIII) 36
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Time delay is a system described by the following equation in time domain

its transfer function is

and its frequency response

analyzing this frequency response we obtain

Loop stability analysis (IX) 37
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Assume that the loop transfer function is composed of a rational transfer 
function and a delay

The magnitude and phase of the frequency response are given by

as a consequence

Loop stability analysis (X) 38
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• Applicability conditions hold
• 𝜇𝜇𝐿𝐿 > 0
• 𝜔𝜔𝑐𝑐 ≈ 1 𝑟𝑟𝑟𝑟𝑟𝑟/𝑠𝑠

• ∠𝐿𝐿 𝑗𝑗𝜔𝜔𝑐𝑐 = − arctan 10
1

− arctan
1
1 − 𝜔𝜔𝑐𝑐𝜏𝜏

180°
𝜋𝜋

≈ −129° − 57°𝜏𝜏
• 𝜑𝜑𝑚𝑚 = 180° − ∠𝐿𝐿 𝑗𝑗𝜔𝜔𝑐𝑐

≈ 51° − 57°𝜏𝜏

We conclude that the closed-loop
system is asymptotically stable for 𝜏𝜏 < 0.89 𝑠𝑠

Loop stability analysis – Example 39
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We will now analyze the following features that characterize the transient 
response of a closed-loop system:

• response time, how quickly the closed-loop system responds to a 
change in the set point

• oscillation damping, the response of the closed-loop system should be 
overdamped or the oscillations should be characterized by a high 
damping factor

• disturbance rejection, the control system ensures good set point tracking 
even in the presence of disturbances

• control effort mitigation, the amplitude of the control signal should not be 
excessively high

We will try to find a correlation between these features and the parameters 
that characterize the stability of the closed-loop system.

Loop transient performance analysis (I) 40
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Let’s start from response time.

We usually think about response time as a measure to characterize, for 
example, the step response in time domain.
Can we found an interpretation of this parameter in the frequency domain?

Consider a first order system (low-pass filter)

Loop transient performance analysis (II) 41
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The speed of the step response increases as the time constant 𝑇𝑇
decreases.
The speed of the step response increases as cutoff frequency 𝜔𝜔𝐻𝐻 = ⁄1 𝑇𝑇
increases.

Loop transient performance analysis (III) 42
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Consider now the transfer function from the set point to the controlled 
variable of a closed-loop system

We can assume, for this transfer function,
the behavior of a low-pass filter.
As you know, if

we can define the cutoff frequency

The cutoff frequency 𝜔𝜔𝑏𝑏 can thus reveal the closed-loop system response 
time: increasing 𝜔𝜔𝑏𝑏 the response time decreases.

Loop transient performance analysis (IV) 43
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We discovered a relation between the response time and the cutoff 
frequency of the closed-loop transfer function 𝐹𝐹(𝑠𝑠).
Can we now relate the response time to a feature of the loop transfer 
function 𝐿𝐿(𝑠𝑠)?

Consider again the closed-loop transfer function

and its frequency response

Let’s introduce now the following approximation

Loop transient performance analysis (V) 44
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If the assumptions of the Bode criterion hold we have

Is this approximation reliable?
Under witch assumptions?
Is the cutoff frequency well
approximated by the crossover
frequency?

Loop transient performance analysis (VI) 45
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In order to answer to the previous doubts, we will study the behavior of the 
closed-loop system transfer function around the crossover frequency

If 𝜑𝜑𝑚𝑚 = 90°

and if 𝜑𝜑𝑚𝑚 > 60°

Loop transient performance analysis (VII) 46
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We can thus conclude that the closed-loop system can be approximated as:
• if 𝜑𝜑𝑚𝑚 > 50° ÷ 60°

• if 𝜑𝜑𝑚𝑚 < 30° ÷ 40°

Loop transient performance analysis (VIII) 47
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If the closed-loop system is approximated by a second order transfer 
function

we still need to compute the damping factor.
We know that the magnitude of the second order approximation at the 
crossover frequency is equal to

and the magnitude of the closed-loop transfer function at the crossover 
frequency, instead, is equal to

merging now these two relations we obtain

Loop transient performance analysis (IX) 48
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where the last approximation holds only if 𝜑𝜑𝑚𝑚 is expressed in degrees.

We can conclude that the closed-loop system
• response time
• oscillation damping
are related to the
• crossover frequency 𝜔𝜔𝑐𝑐
• phase margin 𝜑𝜑𝑚𝑚
respectively (i.e., two features of the loop transfer function).

Loop transient performance analysis (X) 49
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We would like to sketch the step response 
of the closed-loop system

• we first plot the asymptotic magnitude Bode plot of 𝐿𝐿(𝑠𝑠)
• we compute 𝜔𝜔𝑐𝑐 ≈ 100 𝑟𝑟𝑟𝑟𝑟𝑟/𝑠𝑠
• we compute 𝜑𝜑𝑚𝑚

As 𝜑𝜑𝑚𝑚 > 60° we can approximate the
closed-loop system with a first-order
transfer function

Loop transient performance analysis – Example 50
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We would like to sketch the step response 
of the closed-loop system

• we first plot the asymptotic magnitude Bode plot of 𝐿𝐿(𝑠𝑠)
• we compute 𝜔𝜔𝑐𝑐 ≈ 100 𝑟𝑟𝑟𝑟𝑟𝑟/𝑠𝑠
• we compute 𝜑𝜑𝑚𝑚

As 𝜑𝜑𝑚𝑚 > 60° we can approximate the
closed-loop system with a first-order
transfer function

Loop transient performance analysis – Example 51
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We now focus on disturbance rejection and control effort mitigation.

Let’s first analyze the effect of a load disturbance 𝑑𝑑

The transfer function from the disturbance 𝑑𝑑 to the controlled variable 𝑦𝑦 is

The magnitude of the sensitivity function can be approximated by

Loop transient performance analysis (XI) 52
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If the assumptions of Bode criterion hold we have

Disturbance harmonics whose
frequency is less than the
crossover frequency are attenuated

We thus conclude that
• the crossover frequency has to

be greater than the highest
disturbance harmonic we would
like to attenuate

• the higher the magnitude of 𝐿𝐿(jω)
for 𝜔𝜔 < 𝜔𝜔𝑐𝑐, the higher the attenuation

Loop transient performance analysis (XII) 53



Prof. Luca BascettaProf. Luca Bascetta

Consider now the effect of measurement noise 𝑛𝑛

The transfer function from the noise 𝑛𝑛 to the controlled variable 𝑦𝑦 is

We already now that the magnitude of the complementary sensitivity 
function can be approximated by

Loop transient performance analysis (XIII) 54

Complementary sensitivity
function
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If the assumptions of Bode criterion hold we have

Noise harmonics whose
frequency is greater than the
crossover frequency are attenuated

We thus conclude that
• the crossover frequency has to

be less than the lowest
noise harmonic we would
like to attenuate

• the lower the magnitude of 𝐿𝐿(jω)
for 𝜔𝜔 > 𝜔𝜔𝑐𝑐, the higher the attenuation

Loop transient performance analysis (XIV) 55
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Consider now the control effort mitigation

The transfer function from the set point 𝑦𝑦𝑜𝑜 to the control variable 𝑢𝑢 is

The control sensitivity function represents, except for the sign, the transfer 
function from 𝑑𝑑 to 𝑢𝑢, and from 𝑛𝑛 to 𝑢𝑢, as well.

The magnitude of the control sensitivity function should thus be as lower as 
possible at all frequencies.

Loop transient performance analysis (XV) 56
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The magnitude of the control sensitivity function can be approximated by

If the assumptions of Bode criterion hold we have

Let’s assume that 𝐺𝐺 can be
approximated by a low-pass filter
If 𝜔𝜔𝑐𝑐 ≫ 𝜔𝜔𝐺𝐺 the magnitude of ⁄1 𝐺𝐺 can
be very high, and the magnitude of 𝑄𝑄
increases.
We thus conclude that
• the crossover frequency should not

be too high with respect to the
process response time (𝜔𝜔𝐺𝐺)
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We will now study the steady-state behavior of the closed-loop system in 
terms of the error between the set point and the controlled variable.

We will assume the closed-loop system asymptotically stable (otherwise we 
cannot have steady-state!).

In the analysis we will exploit the superposition principle (the net response 
at a given place and time caused by two or more stimuli is the sum of the 
responses which would have been caused by each stimulus individually), 
considering the effects of each input individually.

As inputs we will consider steps, ramps and parabolic signals.

Caveat: you don’t need to memorize any result, you just need to know how 
to compute transfer functions and how to use the final value theorem!
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Let’s first define the error

where is the error in the block diagram?

Loop steady-state performance analysis (II) 59
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Let’s start considering the error generated by the set point.
The transfer function from the set point to the error is

The loop transfer function can be represented as

and observe that

Assuming that the closed-loop system is asymptotically stable we can now 
apply the final value theorem to compute the steady-state error 𝑒𝑒∞.
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We have

Let’s compute now the steady-state error for different set point signals (step, 
ramp, parabolic signal).
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𝑦𝑦𝑜𝑜 𝑡𝑡 = 𝐴𝐴 sca(𝑡𝑡)

𝑦𝑦𝑜𝑜 𝑡𝑡 = 𝐴𝐴 ram(𝑡𝑡)

𝑦𝑦𝑜𝑜 𝑡𝑡 = 𝐴𝐴 par(𝑡𝑡)
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𝑦𝑦𝑜𝑜 𝑡𝑡 = 𝐴𝐴 sca(𝑡𝑡)

𝑦𝑦𝑜𝑜 𝑡𝑡 = 𝐴𝐴 ram(𝑡𝑡)

𝑦𝑦𝑜𝑜 𝑡𝑡 = 𝐴𝐴 par(𝑡𝑡)
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𝑦𝑦𝑜𝑜 𝑡𝑡 = 𝐴𝐴 sca(𝑡𝑡)

𝑦𝑦𝑜𝑜 𝑡𝑡 = 𝐴𝐴 ram(𝑡𝑡)

𝑦𝑦𝑜𝑜 𝑡𝑡 = 𝐴𝐴 par(𝑡𝑡)
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Consider now the error generated by the disturbance 𝑑𝑑.
The transfer function from the disturbance to the error is

It’s the same transfer function, except for the sign, we have just analyzed, 
all the previous results hold!

Finally, consider the error generated by the noise 𝑛𝑛.
The transfer function from noise to error is

and we have
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𝑛𝑛 𝑡𝑡 = 𝐴𝐴 sca(𝑡𝑡)

𝑛𝑛 𝑡𝑡 = 𝐴𝐴 ram(𝑡𝑡)

𝑛𝑛 𝑡𝑡 = 𝐴𝐴 par(𝑡𝑡)
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We now have all the tools required to address the design of the control 
system.

The design will be based on the Bode stability criterion, as a consequence 
the loop transfer function 𝐿𝐿(𝑠𝑠) has to satisfy the assumptions of the Bode 
criterion.

Caveat: The design method we are introducing cannot be used with 
processes with poles in the open right half plane.

First of all, we can reformulate the controller requirements as follows:
• asymptotic stability 𝜑𝜑𝑚𝑚 > 0
• robust stability and oscillation damping 𝜑𝜑𝑚𝑚 > �𝜑𝜑𝑚𝑚
• response time 𝜔𝜔𝑐𝑐 ≥ �𝜔𝜔𝑐𝑐
• steady-state performance 𝑒𝑒∞ ≤ 𝑒̅𝑒∞
• further requirements …
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The controller design problem is usually divided into two steps:
• steady-state design

• assumes that the closed-loop system is asymptotically stable
• considers only the steady-state performance

• transient design
• considers the remaining specifications (requirements on crossover 

frequency, phase margin, etc.)

Following this methodology, we can factor the controller transfer function as

We can observe that
• 𝑅𝑅1(𝑠𝑠), determines steady-state performance
• 𝑅𝑅2 0 = 1, and 𝑅𝑅2(𝑠𝑠) does not contribute to steady-state performance
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Design rules:
• steady-state design (𝑅𝑅1 𝑠𝑠 )

• we choose the minimum value for 𝑔𝑔𝑅𝑅 that fits with the steady-state 
requirements

• once 𝑔𝑔𝑅𝑅 has been selected, we choose the minimum value for 𝜇𝜇𝑅𝑅 that 
fits with the steady-state requirements

• if we can satisfy steady-state requirements without choosing a 
specific value for 𝜇𝜇𝑅𝑅, the selection of this parameter is done during 
transient design

• transient design (𝑅𝑅2 𝑠𝑠 )
• we select zero/pole time constants with a graphical method that aims 

at shaping the loop transfer function Bode plot so as to satisfy 
transient requirements

Let’s see the controller design procedure with an example.
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Requirements:
• 𝑒𝑒∞ ≤ 0.025 when 𝑦𝑦𝑜𝑜 𝑡𝑡 = 10 sca 𝑡𝑡 and 𝑑𝑑 𝑡𝑡 = ±sca 𝑡𝑡
• 𝜔𝜔𝑐𝑐 ≥ 1 𝑟𝑟𝑟𝑟𝑟𝑟/𝑠𝑠
• 𝜑𝜑𝑚𝑚 ≥ 60°
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Steady-state design

Steady-state requirement: 𝑒𝑒∞ ≤ 0.025

We can select 𝑔𝑔𝑅𝑅 = 0
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We have

and considering the requirements

The steady-state design can be thus concluded with
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Transient design
The loop transfer function can be rewritten as

where

For the first trial let’s assume that

From Bode plot we have

We need a second trial with a
dynamic regulator.
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Remember that, if 𝐿𝐿 𝑠𝑠 is a minimum phase system, crossing the 0 𝑑𝑑𝑑𝑑-axis 
with slope −1 and having no further zeros/poles around the crossover 
frequency, the phase margin is close to 90°.

Let’s proceed with the design shaping 𝐿𝐿 𝑠𝑠 in such a way that it crosses the 
0 𝑑𝑑𝑑𝑑-axis with slope −1 and…

We can proceed as follows:
1. divide the magnitude Bode plot in three parts: low frequency, high 

frequency, around the crossover frequency
2. start shaping the magnitude Bode plot of 𝐿𝐿 𝑠𝑠 from the part around the 

crossover frequency

We will now formalize a set of design rules.
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Design rules:
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Design rules:
1. draw a line, having slope −1, crossing the 0 𝑑𝑑𝑑𝑑-axis at a crossover 

frequency greater or equal to the minimum value that satisfies the 
requirements
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Design rules:
2. low-frequency part

• 𝐿𝐿 and 𝐿𝐿1 must have the same slope
otherwise you are modifying the controller type selected in steady-state design

• if the steady-state design set a constraint on the controller gain, then 
𝐿𝐿 ≥ 𝐿𝐿1

otherwise you are modifying the controller gain selected in steady-state design
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Design rules:
2. high-frequency part

• the absolute value of the slope of 𝐿𝐿 plot must be greater or equal to 
the one of 𝐿𝐿1 plot

otherwise the regulator could have more zeros than poles, being an acausal system

• 𝐿𝐿 ≤ 𝐿𝐿1
to guarantee control effort mitigation
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From the magnitude Bode plot we can now extract the expression of the 
loop transfer function

and compute the phase margin in
order to verify the transient
requirements

All the requirements have been fulfilled.
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We can now compute 𝑅𝑅2 𝑠𝑠

and, finally, the expression of the regulator transfer function

Control system design – Example (VIII) 80



Prof. Luca BascettaProf. Luca Bascetta

Among the further requirements we previously mentioned, there are the 
disturbance attenuation requirements.

The feedback is required to attenuate load disturbances and measurement 
noises characterized by sinusoidal signals or any other signal expressed as 
Fourier series or Fourier integral.

These requirements give rise to further constraints on the frequency 
response of the loop transfer function we shape in the transient design.

We will now study how to formalize these constraints and how to take them 
into account during transient design.
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Given a load disturbance 𝑑𝑑 𝑡𝑡 , whose non negligible harmonics span the 
range 0,𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚 , the control system should attenuate this disturbance on the 
controlled variable by a factor 𝐴𝐴 (𝐴𝐴 > 1).

First, the transfer function from 𝑑𝑑 to 𝑦𝑦 is given by

and the corresponding frequency response by

Assuming the closed-loop system asymptotically stable, we can apply the 
sinusoidal response theorem. At steady-state, the output generated by the 
load disturbance has amplitude
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Remembering that the attenuation factor is related to the ratio between the 
output and input amplitudes, we obtain the following constraint

assuming that 𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚 < 𝜔𝜔𝑐𝑐 the constraint can be simplified as

This constraint is equivalent to a
forbidden region in the magnitude
Bode plot of the loop transfer
function.
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Given a measurement noise 𝑛𝑛 𝑡𝑡 , whose non negligible harmonics span the 
range 𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚, +∞ , the control system should attenuate this disturbance on 
the controlled variable by a factor 𝐴𝐴 (𝐴𝐴 > 1).

First, the transfer function from 𝑛𝑛 to 𝑦𝑦 is given by

and the corresponding frequency response by

Assuming the closed-loop system asymptotically stable, we can apply the 
sinusoidal response theorem. At steady-state, the output generated by the 
measurement noise has amplitude
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Remembering that the attenuation factor is related to the ratio between the 
output and input amplitudes, we obtain the following constraint

assuming that 𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚 > 𝜔𝜔𝑐𝑐 the constraint can be simplified as

This constraint is equivalent to a
forbidden region in the magnitude
Bode plot of the loop transfer
function.
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Though the feedback controller is able to attenuate load disturbances and 
measurement noise, when disturbances are measurable we can try to 
compensate them.

Disturbance compensation has the advantage, with respect to the 
attenuation action exerted by feedback, that the compensator exploits the 
measured disturbance to act directly on the control variable, while feedback 
has to wait the effect of the disturbance on the controlled variable.
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We design the compensator in such a way that it cancels out the effect of 
the disturbance on the controlled variable. This is equivalent to make the 
transfer function from 𝑑𝑑 to 𝑦𝑦 identically zero

Solving with respect to the compensator transfer function we obtain

This relation is a guideline to design
the compensator. In fact, in many
situations it cannot be directly applied.
For example when:
• 𝐺𝐺 𝑠𝑠 is a non-minimum phase

transfer function
• 𝐶𝐶 𝑠𝑠 is an a-causal system
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We can consider the following significant situations:
• step disturbance

• sinusoidal disturbance at frequency �𝜔𝜔

• disturbance with harmonics in the frequency range 0, �𝜔𝜔

Feedforward compensation (III) 88
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We can consider the following significant situations:
• step disturbance

• sinusoidal disturbance at a frequency �𝜔𝜔

• disturbance with harmonics in the frequency range 0, �𝜔𝜔

Feedforward compensation (III) 89
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Let’s now add the compensator to the standard feedback architecture.

The equation to design the compensator is now

Caveat: The feedback controller and the compensator can be designed 
independently!

Feedforward compensation (IV) 90



Prof. Luca BascettaProf. Luca Bascetta

The same philosophy can be applied to the set point, in order to improve the 
tracking performance of the closed-loop system.

The transfer function from 𝑦𝑦𝑜𝑜 to 𝑦𝑦 is

We design the compensator to have a unitary transfer function from 𝑦𝑦𝑜𝑜 to 𝑦𝑦
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As we have seen for the disturbance compensator, this relation is a 
guideline for the design.

An example of a more realistic solution is the following

where the compensator is designed to replicate the ideal one on a desired 
range of frequencies.
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Another common feedforward action to improve set point tracking is pre-
filtering.

Remember that the transfer function from 𝑦𝑦𝑜𝑜 to 𝑦𝑦 is

Two examples of pre-filter are:
• a pre-filter to enforce zero steady-state error
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• a pre-filter to increase the crossover frequency
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We can now imagine a control architecture where set point pre-filtering and 
compensation coexist.

This architecture allows to impose to the closed-loop system a desired 
behavior, imposing that the 𝑦𝑦𝑜𝑜 → 𝑦𝑦 relation behaves like a desired transfer 
function 𝐹𝐹𝑜𝑜 𝑠𝑠 (reference model).
Consider the transfer function from 𝑦𝑦𝑜𝑜 to 𝑦𝑦

Feedforward compensation (IX) 95



Prof. Luca BascettaProf. Luca Bascetta

We can obtain the desire

selecting

The requirements for the reference model are:
• unitary gain
• relative degree greater or equal to the relative degree of 𝐺𝐺 𝑠𝑠
• include the zeros of 𝐺𝐺 𝑠𝑠 that lie in the right half plane
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In many real applications the process can be separated into two 
subsystems, thanks to an intermediate variable 𝑣𝑣 that can be measured.
The system can be thus represented as a series of two transfer functions 
with a possible disturbance in between.

This subdivision can be exploited to simplify the design (and improve the 
performance of) the control system if:
• 𝐺𝐺1 is minimum phase and 𝐺𝐺2 is non minimum phase
• 𝐺𝐺1 and 𝐺𝐺2 are minimum phase systems, but the response time of 𝐺𝐺2 is 

definitely greater than the response time of 𝐺𝐺1

These conditions are satisfied, for example, when 𝐺𝐺1 is the actuator and 𝐺𝐺2
the process.
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When one of the previous conditions holds we can adopt a control 
architecture called cascaded control.

The inner regulator 𝑅𝑅1:
• is designed considering only the inner system 𝐺𝐺1 𝑠𝑠
• ensures set point tracking at maximum allowable crossover frequency
• ensures high-bandwidth disturbance rejection

The outer regulator 𝑅𝑅2:
• has a crossover frequency definitely lower than the inner loop
• the inner loop is seen by the outer regulator as a unitary transfer function
• is designed considering only the outer system 𝐺𝐺2 𝑠𝑠
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PID regulators are characterized by the following control law

or equivalently

where the integral time and the derivative time are defined as

PIDs are the most common industrial regulators, in particular in mechatronic 
applications.

The most common combination of PID actions are P, PD, PI, and PID.

PID regulators (I) 99

Proportional gain
Integral gain

Derivative gain



Prof. Luca BascettaProf. Luca Bascetta

Why are PIDs so common in industrial applications to be called industrial 
regulators?
The most important reasons of PIDs’ success are:
• they can be easily implemented using different technologies (hydraulic, 

pneumatic, electronic)
• they allow to control with good performance many different industrial 

processes
• they have been standardized (cheapness and reliability)
• they can be easily tuned (only 3 parameters to be selected)
• well-established auto-tuning techniques exist

In the following we will study both analytical tuning rules (based on Bode 
plots) and auto-tuning techniques.
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As any LTI system, PIDs can be represented by a transfer function

In the present form a PID is an a-causal system (has more zeros than 
poles), due to the presence of the derivative action.
In order to make the system causal an high frequency pole is usually added 
to the derivative action.
Apart from making the system causal, this high-frequency pole has the 
following characteristics:
• it acts as a low-pass filter on the derivative action
• it has a negligible influence on the tuning of the controller parameters
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Let’s first introduce, with an example, a tuning methodology based on Bode 
plots.

Requirements:
• 𝑒𝑒∞ = 0 when 𝑦𝑦𝑜𝑜 𝑡𝑡 = sca 𝑡𝑡
• 𝜑𝜑𝑚𝑚 ≥ 40°
• maximize 𝜔𝜔𝑐𝑐
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We can write the PID transfer function as follows

and select the zeros of the PID so as to cancel the poles of the process, 
obtaining

The crossover frequency is thus

and the phase margin

Solving the previous inequality we can find the maximum value of the 
crossover frequency that is compatible with the other specifications.
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Solving with respect to the PID gain we obtain

We can now write the transfer function of the regulator

and determine the corresponding parameters
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We will now introduce auto-tuning rules, a set of techniques that allow to 
automatically determine the regulator parameters using the information 
obtained through a few experiments on the process.

Auto-tuning rules do not require any knowledge about the process model (or 
the model is implicitly identified from experimental data).

There are a huge number of different auto-tuning rules in the scientific 
literature and in commercial products.
We will introduce two classical tuning rules developed in 1942 by John 
Ziegler and Nathaniel Nichols.
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We start from the so called “closed-loop” rule.
The rule is composed of the following steps:
1. the regulator is started with all the gains (proportional, integral, 

derivative) set to zero
2. the proportional gain is slightly increased and a step response is 

performed
3. the proportional gain is continuously increased and the step response 

experiment repeated, until undamped oscillations appear in the 
controlled variable (�𝐾𝐾𝑃𝑃 is the proportional gain that causes the 
undamped oscillations)

4. the period �𝑇𝑇 of the oscillations is measured
5. PID parameters are

selected following a table
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We conclude the “closed-loop” rule with some observations:
• there are systems that never generate undamped oscillations, the rule 

does not work with these systems 
• in practice, bringing a system close to its stability limit is usually 

dangerous and not acceptable
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The “open-loop” rule is composed of the following steps:
1. a step response is performed on the process (open-loop experiment)
2. if the step response is non oscillating and monotonically increasing, we 

can draw the tangent to the step response at the inflection point and 
compute the following parameters (graphically or numerically)
a. gain 𝜇𝜇, given by �𝑦𝑦/�𝑢𝑢
b. 𝜏𝜏 and 𝑇𝑇, from the intersection of

the tangent with the 𝑥𝑥-axis and 
the steady-state line

3. PID parameters are
selected following a table
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We conclude the “open-loop” rule with some observations:
• if the step response is oscillating, or it is not monotonically increasing, or 

it does not have an inflection point, the rule cannot be applied 
• in practice, operating a process in open-loop or performing a step 

response is not always acceptable

PID regulators (VIII) 109
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