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EXERCISE 1

1. Consider a wheel rolling without slipping on the horizontal plane, keeping the sagittal plane in the
vertical direction. Write the expression of the pure rolling constraint in the case of a fixed and a
steerable wheel.

The pure rolling constraint has always the same form, independently of the fact that the wheel is fixed
or steerable, and is given by

ẋ sin θ − ẏ cos θ = 0

where x, y are the positions of the wheel contact point with respect to a fixed reference frame, and θ
is the wheel sagittal plane orientation.

Considering two wheels, attached to the same vehicle having orientation θ, the fixed wheel is charac-
terised by a pure rolling constraint

ẋ sin θ − ẏ cos θ = 0

while the steerable wheel is characterised by a pure rolling constraint

ẋ sin (θ + φ)− ẏ cos (θ + φ) = 0

where φ is the steering angle.

2. Are the previous constraints holonomic or nonholonomic? Motivate the answer with a mathematical
proof.

The pure rolling constraint
ẋ sin θ − ẏ cos θ = 0

is a nonholonomic constraint.

Rewriting the constraint in Pfaffian form

[
sin θ − cos θ 0

] ẋẏ
θ̇

 = 0

we can show it is nonholonomic using the necessary and sufficient condition. If the constraint were
holonomic, we should find a function α (q) that satisfies the following equations
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∂y
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∂θ
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From equation (1) we get
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∂y
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from (2)
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and from (3)
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Substituting the previous two expressions in equation (1) we get
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or, equivalently
∂ (α (q))

∂y
= tan θ

∂ (α (q))

∂x

However, from equation (1) we also get

∂ (α (q))

∂y
= − 1

tan θ

∂ (α (q))

∂x

These two conditions can be satisfied at the same time if and only if α (q) = 0. We thus conclude that
the constraint is nonholonomic.

3. Consider a single-track robot with front fixed wheel and rear steerable wheel. Assuming as configura-
tion vector q = [x y θ φ]T , where (x y θ) is the robot pose and φ the steering angle, write the kinematic
model of the robot without explicitly computing a base of Null

(
AT (q)

)
.

If (x, y) represent the position of the rear wheel contact point, and

xf = x+ ` cos θ yf = y + ` sin θ (4)

the position of the front wheel contact point, ` being the length of the vehicle (distance between the
front and rear wheel contact points), we can write the two pure rolling constraints as follows

ẋ sin (θ + φ)− ẏ cos (θ + φ) = 0 ẋf sin θ − ẏf cos θ = 0

From equation (4) a relation between the velocities of the two contact points follows

ẋf = ẋ− `θ̇ sin θ ẏf = ẏ + `θ̇ cos θ

allowing to rewrite the front wheel constraint as

ẋ sin θ − ẏ cos θ = `θ̇

We can now write the two constraints together in Pfaffian form

[
sin (θ + φ) − cos (θ + φ) 0 0

sin θ − cos θ −` 0

]
︸ ︷︷ ︸

AT (q)


ẋ
ẏ

θ̇

φ̇


︸︷︷︸
q̇

= 0

Denoting by G (q) the matrix whose columns are a base of the null space of AT (q), the kinematic
model can be written as follows

q̇ = G (q)u

EXERCISE 2



1. What are the approaches that can be used to model the wheel-ground interaction? List them and
explain the differences between them.

There are two main approaches to model the wheel-ground interaction.

The first one is the empirical approach. In empirical tire models an experimental dataset including
lateral forces and corresponding slip angles is assumed to be available, and a class of mathematical
functions suitable to fit the dataset is selected. The solution of the fitting problem represents the tire
model. A classical example of fitting function is the Pacejka Magic Forrmula.

The second one is the physical approach. In this case the model that explains the force-slip relation
is derived using physical principles. An example of physical model is the brush of Fiala model.

2. The longitudinal force in the brush or Fiala model is given by the following expression

Fx =

{
Cxσx

(
−1 + |σx|

σxsl
− σ2

x
3σ2

xsl

)
|σx| < σxsl

−µFzsign (σx) |σx| ≥ σxsl
Explain the meaning of each symbol and of the wheel-ground interaction model equation.

In the brush or Fiala model the tire is modelled as a belt equipped with infinitely many flexible bristles,
wrapped around a cylindrical rigid body, which moves on a flat surface. The force is generated by the
deformation of the bristles through a linear stiffness model.

When the slip σx is below the minimum slip value that gives full sliding, i.e., σxsl , the longitudinal
force is given by

Fx = Cxσx

(
−1 +

|σx|
σxsl
− σ2x

3σ2xsl

)
where Cx is the cornering stiffness. When, instead, the slip exceeds σxsl , the longitudinal force saturates
to the maximum friction force, i.e., Fx = −µFzsign (σx), where µ is the friction coefficient and Fz the
normal wheel load.

3. Write the friction circle constraint and explain its meaning.

In general a tire can generate either longitudinal and lateral forces. In this case, however, we must
consider that the total force vector cannot exceed the maximum friction force. If Fx and Fy are the
longitudinal and lateral forces, respectively, this constraint can be expressed as√

F 2
x + F 2

y ≤ µFz

and is called friction circle constraint.

ESERCIZIO 3

1. Define a feasible path planning problem and an optimal path planning problem, stressing the main
differences between the two problems.

A feasible path planning problem is defined as: given a path planning problem (Qfree,qinit,Qgoal) find
a feasible path (i.e., a collision-free path such that σ(0) = qinit and σ(1) ∈ Qgoal) σ : [0, 1] → Qfree
such that σ(0) = qinit and σ(1) ∈ Qgoal, if one exists; if no such path exists, report failure.

An optimal path planning problem is defined as: given a path planning problem (Qfree,qinit,Qgoal),
and a cost function c : Σ → R≥0 (where Σ is the set of all paths), find a feasible path σ? such that
c(σ?) = min {c(σ) : σ is feasible}, if one exists; if no such path exists, report failure.

The main difference is the introduction of a cost function that allows to quantify the “quality” of each
path.



2. Describe the algorithm to construct the simplified probabilistic roadmap used by sPRM.

The sPRM algorithm to construct the roadmap follows:

V ← {qinit} ∪ {SampleFreei, i = 1, . . . , N};
E ← ∅;
foreach v ∈ V do

U ← Near (G,v, r) \ {v};
foreach u ∈ U do

if CollisionFree (v,u) then
E ← E ∪ {(v,u)};

end

end

end
return G = (V,E)

N vertex are sampled from the free space, then for each vertex v the set of near nodes, i.e., the set of
nodes in a ball of radius r centred in v, is computed and all the collision free connections between v
and the nodes in the near node set are generated.

3. How the previous algorithm should be modified in order to transform it into its optimal version?

The optimal version of sPRM differs from sPRM only for the near nodes computation, as in the optimal
version the radius is computed according to the following rule

r = γPRM (log (n) /n)1/d

The complete algorithm follows

V ← {qinit} ∪ {SampleFreei, i = 1, . . . , N};
E ← ∅;
foreach v ∈ V do

U ← Near
(
G,v, γPRM (log (n) /n)1/d

)
\ {v};

foreach u ∈ U do
if CollisionFree (v,u) then

E ← E ∪ {(v,u)};
end

end

end
return G = (V,E)

ESERCIZIO 4

1. Consider a robot described by the unicycle kinematic model, and a point P related to the unicycle
wheel contact point (x, y) by the following relations

xP = x+ ε cos θ yP = y + ε sin θ

Show how a feedback control law that linearises the unicycle model can be derived.

Considering the unicycle model

ẋ = v cos θ

ẏ = v sin θ

θ̇ = ω



and differentiating the equations of P with respect to time

ẋP = ẋ− εθ̇ sin (θ) = v cos (θ)− εθ̇ sin (θ) = vxP

ẏP = ẏ + εθ̇ cos (θ) = v sin (θ) + εθ̇ cos (θ) = vyP

Multiplying the two equations by cos θ / sin θ and summing them together one obtains

v cos2 (θ)− εω sin (θ) cos (θ) = vxP cos (θ)
v sin2 (θ) + εω cos (θ) sin (θ) = vyP sin (θ)

v = vxP cos (θ) + vyP sin (θ)

Instead, multiplying the two equations by sin θ / cos θ and subtracting them together yields

v cos (θ) sin (θ)− εω sin2 (θ) = vxP sin (θ)
v sin (θ) cos (θ) + εω cos2 (θ) = vyP cos (θ)

εω = vyP cos (θ)− vxP sin (θ)

The change of coordinates that linearises the unicycle model is thus given by

v = vxP cos (θ) + vyP sin (θ)

ω =
vyP cos (θ)− vxP sin (θ)

ε

2. Design a trajectory tracking controller based on the linearising law introduced in the previous step,
and draw a block diagram of the entire control system, explaining how it can be tuned.

The result of the feedback linearising controller is a dynamical system composed of two independent
integrators

ẋP = vxP
ẏP = vyP

A simple PD controller can be thus used to track the desired trajectory

vxP = ẋPd
+ k1 (xPd

− xP )

vyP = ẏPd
+ k2 (yPd

− yP )

A diagram of the entire control system is shown in the following figure

Robot

model

Moreover, k = k1 = k2 can be selected in order to enforce the desired trajectory tracking error
convergence rate. In fact, the convergence is exponential and k represents the eigenvalue of the error
dynamics.

3. Explain why the control system designed in the previous step cannot control the robot heading.

Due to the feedback linearising controller the robot orientation becomes an hidden state, and cannot
be controlled any more. For this reason that control system cannot be used to control the robot
heading but only its position.


