
Control of Mobile Robots
Exercise 1: Kinematics

Prof. Luca Bascetta

Exercise 1 - Pure rolling disk

Consider a disk rolling without slipping on the horizontal plane (x-y plane),
keeping the sagittal plane in the vertical direction (z direction).
Write the kinematic constraint in Pfaffian form at which the disk is subjected
to.

Solution

The rolling disk configuration is represented by vector q = [x, y, θ]
T

, and the
disk is subjected to a kinematic constraint that, in the local disk reference
frame (xd, yd), can be expressed as ẏd = 0 (only the velocities parallel to xd
are admissible).
In order to write this constraint as a kinematic constraint in Pfaffian form, it must be expressed in terms of the
configuration variables, and thus in the global reference frame (x, y).
The local disk reference frame is related to the global reference frame by the following rotation matrix

Rd =

[
cos θ − sin θ
sin θ cos θ

]
Velocities in the global reference frame are thus related to velocities in the local disk frame by the relation[

ẋd
ẏd

]
= RT

d

[
ẋ
ẏ

]
=

[
cos θ sin θ
− sin θ cos θ

] [
ẋ
ẏ

]
=

[
ẋ cos θ + ẏ sin θ
ẏ cos θ − ẋ sin θ

]
The constraint ẏd = 0 can be thus rewritten in terms of the configuration variables as

ẏ cos θ − ẋ sin θ = ẋ sin θ − ẏ cos θ = 0

or in Pfaffian form as

[
sin θ − cos θ 0

] ẋẏ
θ̇

 = 0
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Exercise 2 - Bicycle robot

Write the kinematic model of a bicycle with front steerable wheel, considering
as configuration vector q = [x, y, θ, φ]

T
, where x, y denote the position of

the front wheel.

Solution

The two wheels are subjected to pure rolling constraints

ẋ sin (θ + φ)− ẏ cos (θ + φ) = 0

ẋr sin (θ)− ẏr cos (θ) = 0

where (xr, yr) is the position of the rear wheel contact point, and it is related to
the position of the front wheel contact point (x, y) through a rigidity constraint

xr = x− ` cos θ

yr = y − ` sin θ

Differentiating the rigidity constraints with respect to time we obtain

ẋr = ẋ+ `θ̇ sin θ

ẏr = ẏ − `θ̇ cos θ

Using these two relations we can write the rear wheel constraint in terms of the configuration variables as follows

ẋ sin (θ)− ẏ cos (θ) + `θ̇ = 0

The two constraints that describe the bicycle can be written in Pfaffian form as

AT (q) q̇ =

[
sin (θ + φ) − cos (θ + φ) 0 0

sin (θ) − cos (θ) ` 0

]
ẋ
ẏ

θ̇

φ̇

 = 0 (1)

To determine the bicycle kinematic model we need to solve this set of equations for q̇, i.e., we need to compute a
basis for the null space of matrix AT (q). Using a symbolic manipulation tool we obtain the following basis for the
null space of matrix AT (q)


cos (θ + φ)
sin (θ + φ)

sin (φ)

`
0
0

 ,


0
0
0
1

 ,


The kinematic model of the bicycle is given by


ẋ
ẏ

θ̇

φ̇

 =


cos (θ + φ)
sin (θ + φ)

sin (φ)

`
0

 v +


0
0
0
1

ω
where v is the velocity of the front wheel, and ω the steering velocity of the front wheel.
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Exercise 3 - Unicycle robot

Consider a unicycle robot whose pose is described by the wheel contact point
(x, y) and the angle θ.
Write the kinematic constraint at which the unicycle robot is subjected to,
and show that it is a nonholonomic constraint.

Solution

The unicycle robot configuration is represented by vector q = [x, y, θ]
T

, and
its wheel is subjected to a pure rolling constraint

ẋ sin θ − ẏ cos θ = 0

Writing the rolling constraint in Pfaffian form we have

[
sin θ − cos θ 0

] ẋẏ
θ̇

 = 0

and we define X (q) = sin θ, Y (q) = − cos θ, and Θ (q) = 0.
In order to show that this is a nonholonomic constraint we can apply the necessary and sufficient condition. We
should find a function α (q) such that

∂ (α (q)X (q))

∂y
=
∂ (α (q)Y (q))

∂x

∂ (α (q)X (q))

∂θ
=
∂ (α (q) Θ (q))

∂x
∂ (α (q)Y (q))

∂θ
=
∂ (α (q) Θ (q))

∂y

and substituting the definitions of X (q), Y (q), Θ (q) we get

∂α (q)

∂y
sin θ = −∂α (q)

∂x
cos θ (2)

∂α (q)

∂θ
sin θ + α (q) cos θ = 0 (3)

−∂α (q)

∂θ
cos θ + α (q) sin θ = 0 (4)

From relation (4) we obtain

∂α (q)

∂θ
= α (q) tan θ

and introducing this result into (3)

α (q) sin2 θ + α (q) cos2 θ = 0 ⇒ α (q) = 0

We thus conclude that the constraint is nonholonomic.
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Exercise 4 - Kinematic constraints and kinematic model

Consider a mobile robot whose configuration is described by vector q = [q1, q2, q3, q4]
T

, and characterized by the
following two constraints

q̇1 + q1q̇2 + q̇3 = 0

q̇2 + q2q̇3 = 0

Does the following kinematic model

q̇ =


q1q2 − 1
−q2

1
0

u1 +


0
0
0
1

u2
describe the motion of the robot?

Solution

The two constraints can be represented in Pfaffian form as

AT (q)q̇ =

[
1 q1 1 0
0 1 q2 0

]
q̇1
q̇2
q̇3
q̇4

 = 0

If the given equation is the kinematic model for a robot described by these two constraints, the two vectors
q1q2 − 1
−q2

1
0




0
0
0
1


should belong to the null space of AT (q) and be linearly independent. This can be easily verified showing that

AT (q)


q1q2 − 1
−q2

1
0

 = 0 AT (q)


0
0
0
1

 = 0

and that

rank



q1q2 − 1 0
−q2 0

1 0
0 1


 = 2
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Exercise 5 - System of kinematic constraints

Consider the following systems of kinematic constraints

q̇1 + q1q̇2 + q̇3 = 0

q̇1 + q̇2 + q1q̇3 = 0

where q =
[
q1 q2 q3

]T
and q1 6= 1, and

q̇1 + q1q̇2 + 6q̇3 = 0

4q̇2 + q2q̇3 = 0

where q =
[
q1 q2 q3 q4

]T
.

Determine if they are holonomic or nonholonomic.

Solution

Considering the first set, constraints can be rewritten in Pfaffian form as

AT (q) q̇ =

[
1 q1 1
1 1 q1

]
q̇ = 0

Under the assumption q1 6= 1, taking the first and last columns it can be easily verified that rank
(
AT (q)

)
= 2.

A basis of the null space of AT (q) is composed by a single vector

g1 (q) =

1 + q1
−1
−1


The procedure to compute the accessibility distribution is initialized with ∆1 = span {g1}, but no other vector
fields can be added. We conclude that the accessibility space has dimension 1, that is equal to n− k, and thus the
system of constraints is holonomic.
Considering the second set, constraints can be rewritten in Pfaffian form as

AT (q) q̇ =

[
1 q1 6 0
0 4 q2 0

]
q̇ = 0

Taking the first two columns, it can be easily verified that rank
(
AT (q)

)
= 2.

A basis of the null space of AT (q) is composed by the following two vectors

g1 (q) =


q1q2 − 24
−q2

4
0

 g2 (q) =


0
0
0
1


The procedure to compute the accessibility distribution is initialized with ∆1 = span {g1, g2}.
A third vector can be generated as

g3 (q) = [g1, g2] =
∂g2
∂q

g1 −
∂g1
∂q

g2 = 0−


q2 q1 0 0
0 −1 0 0
0 0 0 0
0 0 0 0




0
0
0
1

 =


0
0
0
0


No other vector fields can be added, we conclude that the accessibility space has dimension 2, that is equal to
n− k, and thus the system of constraints is holonomic.

5



Exercise 6 - System of kinematic constraints

Consider the following system of kinematic constraints

q21 q̇2 + (1− q1) q̇3 + q̇4 = 0

6q̇1 + (1− q1) q̇2 + 4q̇3 = 0

where q =
[
q1 q2 q3 q4

]T
.

Answer to the following questions:

1. is each constraint, considered as an independent constraint, holonomic or nonholonomic?

2. is the system of constraints holonomic or nonholonomic?

Solution

Considering the first constraint

aT (q) q̇ =
[
0 q21 1− q1 1

]
q̇ = 0

as an independent constraint, we can write the following equalities

∂ [α (q) ak (q)]

∂qj
=
∂ [α (q) aj (q)]

∂qk

for (j, k) ∈ {(1, 2) , (1, 3) , (1, 4) , (2, 3) , (2, 4) , (3, 4)}, obtaining

∂
[
α (q) q21

]
∂q1

= q21
∂α (q)

∂q1
+ 2q1α (q) =

∂ [α (q) · 0]

∂q2
= 0

∂ [α (q) (1− q1)]

∂q1
= (1− q1)

∂α (q)

∂q1
− α (q) =

∂ [α (q) · 0]

∂q3
= 0

∂α (q)

∂q1
=
∂ [α (q) · 0]

∂q4
= 0

∂ [α (q) (1− q1)]

∂q2
= (1− q1)

∂α (q)

∂q2
=
∂
[
α (q) q21

]
∂q3

= q21
∂α (q)

∂q3

∂α (q)

∂q2
=
∂
[
α (q) q21

]
∂q4

= q21
∂α (q)

∂q4
∂α (q)

∂q3
=
∂ [α (q) (1− q1)]

∂q4
= (1− q1)

∂α (q)

∂q4

From the third equation it follows that

∂α (q)

∂q1
= 0

Introducing this relation into the first equation we obtain

2q1α (q) = 0

and thus the only solution is α (q) = 0. As a consequence, the first is a nonholonomc constraint.
Considering now the second constraint

aT (q) q̇ =
[
6 1− q1 4 0

]
q̇ = 0

as an independent constraint, we can write the following equalities

∂ [α (q) ak (q)]

∂qj
=
∂ [α (q) aj (q)]

∂qk
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for (j, k) ∈ {(1, 2) , (1, 3) , (1, 4) , (2, 3) , (2, 4) , (3, 4)}, obtaining

∂ [α (q) (1− q1)]

∂q1
= (1− q1)

∂α (q)

∂q1
− α (q) =

∂ [6α (q)]

∂q2
= 6

∂α (q)

∂q2
∂ [4α (q)]

∂q1
= 4

∂α (q)

∂q1
=
∂ [6α (q)]

∂q3
= 6

∂α (q)

∂q3
∂ [α (q) · 0]

∂q1
= 0 =

∂ [6α (q)]

∂q4
= 6

∂α (q)

∂q4
∂ [4α (q)]

∂q2
= 4

∂α (q)

∂q2
=
∂ [α (q) (1− q1)]

∂q3
= (1− q1)

∂α (q)

∂q3
∂ [α (q) · 0]

∂q2
= 0 =

∂ [α (q) (1− q1)]

∂q4
= (1− q1)

∂α (q)

∂q4
∂ [α (q) · 0]

∂q3
= 0 =

∂ [4α (q)]

∂q4
= 4

∂α (q)

∂q4

From the third, fifth and sixth equations it follows that

∂α (q)

∂q4
= 0

Instead, combining second and fourth equations we obtain

∂α (q)

∂q2
=

1− q1
4

∂α (q)

∂q3
∂α (q)

∂q1
=

3

2

∂α (q)

∂q3

and from them

∂α (q)

∂q1
=

3

2

∂α (q)

∂q3
=

3

2

4

1− q1
∂α (q)

∂q2
=

6

1− q1
∂α (q)

∂q2

Finally, including this relation into the first equation we obtain

α (q) + 6
∂α (q)

∂q2
= (1− q1)

6

1− q1
∂α (q)

∂q2
= 6

∂α (q)

∂q2

that results into α (q) = 0.
As a consequence, the second constraint is nonholonomic.
Consider now the system of two constraints, the set can be rewritten in Pfaffian form as

AT (q) q̇ =

[
0 q21 1− q1 1
6 1− q1 4 0

]
q̇ = 0

Taking the first and last columns, it can be easily verified that rank
(
AT (q)

)
= 2.

A basis of the null space of AT (q) is composed by the two vectors

g1 (q) =


0
−4

1− q1
3q21 + 2q1 − 1

 g2 (q) =


−4
0
6

6 (q1 − 1)


The procedure to compute the accessibility distribution is initialized with ∆1 = span {g1, g2}.
To construct ∆2 we have to add to ∆1 the vector fields obtained by the Lie bracket of all possible combinations of
the elements of ∆1, that are linearly independent with respect to g1 and g2. The only available combination is g1,
g2 giving rise to

g3 (q) = [g1, g2] =
∂g2
∂q

g1 −
∂g1
∂q

g2 =


0 0 0 0
0 0 0 0
0 0 0 0
6 0 0 0




0
−4

1− q1
3q21 + 2q1 − 1

−


0 0 0 0
0 0 0 0
−1 0 0 0

6q1 + 2 0 0 0




−4
0
6

6 (q1 − 1)



=


0
0
−4

8 (3q1 + 1)


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as a consequence ∆2 = span {g1, g2, g3}.
Again to construct ∆3 we have to add to ∆2 the vector fields obtained by the Lie bracket of all possible combinations
including one element of ∆2 and one of ∆1, that are linearly independent with respect to g1, g2 and g3. The available
candidates are (already excluding Brackets that are equal to 0, e.g., [g1, g1], and Brackets that are equal except
for the sign, e.g. [g1, g2] and [g2, g1])

[g1, g2] [g1, g3] [g2, g3]

Excluding the first one that is already in ∆2 as g3, we can compute the second and the third

[g1, g3] =
∂g3
∂q

g1 −
∂g1
∂q

g3 =


0 0 0 0
0 0 0 0
0 0 0 0
−24 0 0 0




0
−4

1− q1
3q21 + 2q1 − 1

−


0 0 0 0
0 0 0 0
−1 0 0 0

6q1 + 2 0 0 0




0
0
−4

8 (3q1 + 1)

 = 0

[g2, g3] =
∂g3
∂q

g2 −
∂g2
∂q

g3 =


0 0 0 0
0 0 0 0
0 0 0 0
−24 0 0 0




−4
0
6

6 (q1 − 1)

−


0 0 0 0
0 0 0 0
0 0 0 0
6 0 0 0




0
0
−4

8 (3q1 + 1)

 =


0
0
0
96


We exclude the first as it is the null vector and keep the second defining

g4 (q) =


0
0
0
96


Finally, ∆3 = span {g1, g2, g3, g4}.
As n = 4 and m = 2, from the theory we now that ∆A = ∆n−m+1 = ∆3. Consequently, we only need to verify
that all the four vectors are linearly independent

det




0 −4 0 0
−4 0 0 0

1− q1 6 −4 0
3q21 + 2q1 − 1 6 (q1 − 1) 8 (3q1 + 1) 96


 = 6144

We conclude that the system of constraints is nonholonomic.
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Exercise 7 - Bicycle robot

Write the kinematic model of a bicycle with front and rear steerable wheels.

Solution

The bicycle robot configuration is represented by vector

q = [x, y, θ, φ1, φ2]
T

and the two wheels are subjected to pure rolling constraints

ẋ1 sin (θ + φ1)− ẏ1 cos (θ + φ1) = 0

ẋ sin (θ + φ2)− ẏ cos (θ + φ2) = 0

where (x1, y1) is the position of the front wheel contact point, and it is related
to the position of the rear wheel contact point (x, y) through a rigidity constraint

x1 = x+ ` cos θ

y1 = y + ` sin θ

Differentiating the rigidity constraint with respect to time we obtain

ẋ1 = ẋ− `θ̇ sin θ

ẏ1 = ẏ + `θ̇ cos θ

Using these two relations we can write the front wheel constraint in terms of the configuration variables as follows

ẋ sin (θ + φ1)− ẏ cos (θ + φ1)− `θ̇ cosφ1 = 0

The two constraints that describe the bicycle can be written in Pfaffian form as

AT (q) q̇ =

[
sin (θ + φ1) − cos (θ + φ1) −` cosφ1 0 0
sin (θ + φ2) − cos (θ + φ2) 0 0 0

]
ẋ
ẏ

θ̇

φ̇1
φ̇2

 = 0 (5)

To determine the bicycle kinematic model we need to solve this set of equations for q̇, i.e., we need to compute a
basis for the null space of matrix AT (q).
To simplify the solution, we can use the “reduced row echelon” form of matrix AT (q), applying the following row
operations (in the following, r1 and r2 denotes the first and the second row of AT (q)):

1. After applying the row operations r1 ← r1 − r2
cos(θ + φ1)

cos(θ + φ2)
and r1 ← r1 cos(θ + φ2), r1 becomes

r1 = [sin(φ1 − φ2) 0 − l cos(φ1) cos(θ + φ2) 0 0]

2. To make the first element of r1 equal to 1, we can apply r1 ←
r1

sin(φ1 − φ1)
obtaining

r1 =

[
1 0

− l cos(φ1) cos(θ + φ2)

sin(φ1 − φ2)
0 0

]
3. Applying the row operation r2 ← r2 − r1 sin(θ + φ2), the first element of r2 becomes equal to zero

r2 =

[
0 − cos(θ + φ2)

l cos(φ1) cos(θ + φ2) sin(θ + φ2)

sin(φ1 − φ2)
0 0

]

4. Finally, applying the row operation r2 ← −
r2

cos(θ + φ2)
, r2 becomes

r2 =

[
0 1

− l cos(φ1) sin(θ + φ2)

sin(φ1 − φ2)
0 0

]
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The augmented matrix is then written as 1 0
−l cos(φ1) cos(θ + φ2)

sin(φ1 − φ2)
0 0 0

0 1
−l cos(φ1) sin(θ + φ2)

sin(φ1 − φ2)
0 0 0


which corresponds to the following system of equations,

ẋ− l cos(φ1) cos(θ + φ2)

sinφ1 − φ2
θ̇ = 0

ẏ − l cos(φ1) sin(θ + φ2)

sinφ1 − φ2
θ̇ = 0

As we have five variables and two equations, we can select the remaining three variables freely. Let u1, u2, and u3
denote the free variables, we can select

u1 = θ̇

u2 = φ̇1 = w1

u3 = φ̇2 = w2.

A solution to the equation (5) can be written as


ẋ
ẏ

θ̇

φ̇1
φ̇2

 =



l cos(φ1) cos(θ + φ2)

sinφ1 − φ2
l cos(φ1) sin(θ + φ2)

sinφ1 − φ2
1
0
0


u1 +


0
0
0
1
0

u2 +


0
0
0
0
1

u3

which corresponds to the kinematic model with inputs θ̇, w1, and w2.
A basis for the null space of matrix AT (q) is thus given by



` cosφ1 cos (θ + φ2)

sin (φ1 − φ2)
` cosφ1 sin (θ + φ2)

sin (φ1 − φ2)
1
0
0


,


0
0
0
1
0

 ,


0
0
0
0
1




In order to select, among all the possible basis, one that allows to have inputs to the kinematic model that can be

easily interpreted as physical quantities, we can multiply the first vector by
sin (φ1 − φ2)

` cosφ1
obtaining




cos (θ + φ2)
sin (θ + φ2)
sin (φ1 − φ2)

` cosφ1
0
0

 ,


0
0
0
1
0

 ,


0
0
0
0
1




The kinematic model of the bicycle is given by


ẋ
ẏ

θ̇

φ̇1
φ̇2

 =


cos (θ + φ2)
sin (θ + φ2)
sin (φ1 − φ2)

` cosφ1
0
0

 v +


0
0
0
1
0

ω1 +


0
0
0
0
1

ω2

where v is the velocity of the rear wheel and ω1, ω2 the steering velocities for the front and rear wheels.
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Exercise 8 - Car-trailer system

Write the kinematic model of a car-trailer system.
The car position (x, y) is represented by the rear wheel contact point, the
trailer position (xt, yt), instead, is represented by the trailer wheel contact
point.

Solution

The car-trailer robot configuration is represented by vector

q = [x, y, θ, θt, φ]
T

and we can write the pure rolling constraints referred to each wheel of the car
and of the trailer as follows

ẋ1 sin (θ + φ)− ẏ1 cos (θ + φ) = 0 (6)

ẋ sin θ − ẏ cos θ = 0 (7)

ẋt sin θt − ẏt cos θt = 0 (8)

where (x1, y1) is the position of the car front wheel contact point.
We can relate the position of the front wheel contact point and of the trailer wheel contact point to (x, y) through
a rigidity constraint

x1 = x+ ` cos θ

y1 = y + ` sin θ

and

xt = x− d cos θt

yt = y − d sin θt

Differentiating the two relations with respect to time we obtain

ẋ1 = ẋ− `θ̇ sin θ

ẏ1 = ẏ + `θ̇ cos θ

and

ẋt = ẋ+ dθ̇t sin θt

ẏt = ẏ − dθ̇t cos θt

Substituting these relations in (6) and (8) we obtain

ẋ sin (θ + φ)− ẏ cos (θ + φ)− `θ̇ cosφ = 0

ẋ sin θ − ẏ cos θ = 0

ẋ sin θt − ẏ cos θt + dθ̇t = 0

The three constraints that describe the car-trailer can be written in Pfaffian form as

AT (q) q̇ =

sin (θ + φ) − cos (θ + φ) −` cosφ 0 0
sin θ − cos θ 0 0 0
sin θt − cos θt 0 d 0



ẋ
ẏ

θ̇

θ̇t
φ̇

 = 0

A basis for the null space of AT (q) q̇ is given by



cos θ
sin θ

1

`
tanφ

1

d
sin (θ − θt)

0


,


0
0
0
0
1




11



Finally, the kinematic model for the car-trailer is


ẋ
ẏ

θ̇

θ̇t
φ̇

 =



cos θ
sin θ

1

`
tanφ

1

d
sin (θ − θt)

0


v +


0
0
0
0
1

ω (9)

where v is the velocity of the rear wheel of the car, and ω the steering velocity for the front wheel.
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