
Automatic Control
Exercise 4: Frequency domain design

Prof. Luca Bascetta

Exercise 1

Consider the following control system

where G(s) =
2

(1 + 10s)2(1 + 0.1s)
.

Compute the transfer function R(s) of a controller in such a way that:

• |e∞| ≤ 0.1 for yo(t) = sca(t);

• the phase margin ϕm is greater or equal to 80o;

• the crossover frequency ωc is greater or equal to 0.1 rad/s.

Solution

Steady-state design
We start from the steady-state design, assuming that once the design will be completed the closed-loop system
will be asymptotically stable.
The steady-state error due to the reference is

e∞ = lim
s→0

s
1

1 + L(s)

1

s
= lim
s→0

1

1 + 2µr

sgr

= lim
s→0

sgr

sgr + 2µr
=

1

1 + 2µr
gr = 0

Enforcing the steady-state requirements we obtain

1

1 + 2µr
≤ 0.1 ⇒ µr ≥ 4.5

We complete the steady-state design assuming µr = 5, thus

R1(s) = 5

Transient design
We start the transient design with

L1(s) =
10

(1 + 10s)2(1 + 0.1s)

Magnitude Bode diagram of L1(s) is shown in Fig. 1.
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Figure 1: L1(s) magnitude Bode diagram.

Though the crossover frequency fulfils the requirements, having slope −2 at the crossover the phase margin cannot
fulfil it, we thus need to revise the design.
The loop transfer function has to be reshaped in such a way that it has the same gain and type of L1(s) (same low
frequency behaviour) and it has slope at least −3 at high frequency (regulator causality). As G(s) is the transfer
function of a minimum phase system we decide to cross the 0 dB-axis with slope −1 at 0.1 rad/s, the minimum
crossover frequency that satisfies the requirement specifications. Doing in this way we obtain the loop transfer
function depicted in Fig. 2.
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Figure 2: La(s) magnitude Bode diagram, first solution.

The corresponding loop transfer function is

La(s) =
10

(1 + 100s)(1 + s)2

which is characterised by

ωc = 0.1 rad/s

ϕc = − arctan(100 · 0.1)− 2 arctan(0.1) ≈ −95.7o

and finally

ϕm = 180o − |ϕc| ≈ 84.3o

The requirements on crossover frequency and phase margin are both fulfilled.
The corresponding regulator is

Ra(s) =
La(s)

G(s)
=

10

(1 + 100s)(1 + s)2
(1 + 10s)2(1 + 0.1s)

2
= 5

(1 + 10s)2(1 + 0.1s)

(1 + 100s)(1 + s)2
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Following the same reasoning, but taking as crossover frequency 1 rad/s, we obtain the loop transfer function
depicted in Fig. 3.
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Figure 3: Lb(s) magnitude Bode diagram, second solution.

The corresponding loop transfer function is

Lb(s) =
10

(1 + 10s)(1 + 0.1s)2

which is characterised by

ωc = 1 rad/s

ϕc = − arctan(10)− 2 arctan(0.1) ≈ −95.7o

and finally

ϕm = 180o − |ϕc| ≈ 84.3o

The requirements on crossover frequency and phase margin are both fulfilled.
The corresponding regulator is

Rb(s) =
Lb(s)

G(s)
=

10

(1 + 10s)(1 + 0.1s)2
(1 + 10s)2(1 + 0.1s)

2
= 5

(1 + 10s)

(1 + 0.1s)

Which is the difference between the two solutions?
The difference can be found in terms of the control effort, comparing the control sensitivity functions in Figs. 4
and 5.
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Figure 4: Qa(s) magnitude Bode diagram, first solution.
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Figure 5: Qb(s) magnitude Bode diagram, second solution.

Exercise 2

Consider the following control system

where G(s) =
1

s(1 + 10s)(1 + s)
.

Compute the transfer function R(s) of a controller in such a way that:

• |e∞| = 0 for yo(t) = Asca(t), where A is an arbitrary real constant;

• the phase margin ϕm is greater or equal to 70o;

• the crossover frequency ωc is greater or equal to 0.1 rad/s.
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Solution

Steady-state design
We start from the steady-state design, assuming that once the design will be completed the closed-loop system
will be asymptotically stable.
The steady-state error due to the reference is

e∞ = lim
s→0

s
1

1 + L(s)

A

s
= lim
s→0

A

1 + µr

sgr+1

= lim
s→0

A
sgr+1

sgr+1 + µr
= 0 gr = 0 ∀µr

We complete the steady-state design assuming µr = 1 and moving the selection of the controller gain to the
transient design, thus

R1(s) = 1

Transient design
We start the transient design with

L1(s) =
1

s(1 + 10s)(1 + s)

Magnitude Bode diagram of L1(s) is shown in Fig. 6.
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Figure 6: L1(s) magnitude Bode diagram.

Though the crossover frequency fulfils the requirements, having slope −2 at the crossover the phase margin cannot
fulfil it, we thus need to revise the design.
The loop transfer function has to be reshaped in such a way that it has the same type of L1(s) (same slope at low
frequency), the gain have still to be selected, and it has slope at least −3 at high frequency (regulator causality).
As G(s) is the transfer function of a minimum phase system we decide to cross the 0 dB-axis with slope −1 at
0.1 rad/s, the minimum crossover frequency that satisfies the requirement specifications. Doing in this way we
obtain the loop transfer function depicted in Fig. 7.
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Figure 7: L(s) magnitude Bode diagram.

The corresponding loop transfer function is

L(s) =
1 + 100s

s(1 + 1000s)(1 + s)2

which is characterised by

ωc = 0.1 rad/s

ϕc = −90o + arctan(100 · 0.1)− arctan(1000 · 0.1)− 2 arctan(0.1) ≈ −106.5o

and finally

ϕm = 180o − |ϕc| ≈ 73.5o

The requirements on crossover frequency and phase margin are both fulfilled.
The corresponding regulator is

R(s) =
L(s)

G(s)
=

1 + 100s

s(1 + 1000s)(1 + s)2
s(1 + 10s)(1 + s)

1
=

(1 + 100s)(1 + 10s)

(1 + 1000s)(1 + s)

As we have only to guarantee that L(s) has the same slope of L1(s) at low frequency, a simpler solution would be

L(s) =
0.1

s(1 + s)2
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Figure 8: L(s) magnitude Bode diagram.

This loop transfer function is characterised by (Fig. 8)

ωc = 0.1 rad/s

ϕc = −90o − 2 arctan(0.1) ≈ −101.4o

and finally

ϕm = 180o − |ϕc| ≈ 78.6o

The requirements on crossover frequency and phase margin are both fulfilled.
The corresponding regulator is

R(s) =
L(s)

G(s)
=

0.1

s(1 + s)2
s(1 + 10s)(1 + s)

1
= 0.1

1 + 10s

1 + s

Exercise 3

Consider the following control system

where G(s) =
10

s

1 + 0.1s

1 + s
.

Compute the transfer function R(s) of a controller in such a way that:

• |e∞| ≤ 0.1 for yo(t) = ram(t) and d(t) = 0;

• a disturbance d(t) = A sin(ωt), where A is an arbitrary constant and ω ≤ 0.1 rad/s, is attenuated on the
output of 1000 times;

• the phase margin ϕm is greater or equal to 80o;

• the crossover frequency ωc is greater or equal to 10 rad/s.
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Solution

Steady-state design
We start from the steady-state design, assuming that once the design will be completed the closed-loop system
will be asymptotically stable.
The steady-state error due to the reference is

e∞ = lim
s→0

s
1

1 + L(s)

1

s2
= lim
s→0

1

1 + 10µr

sgr+1

1

s
= lim
s→0

sgr

sgr+1 + 10µr
=

1

10µr
gr = 0

Enforcing the steady-state requirements we obtain

1

10µr
≤ 0.1 ⇒ µr ≥ 1

We complete the steady-state design assuming µr = 1, thus

R1(s) = 1

We should now consider the effect of the sinusoidal disturbance on the controlled variable, the amplitude of the
disturbance on the output is∣∣∣∣ 1

1 + L(jω)

∣∣∣∣
ω≤0.1

A

In order to ensure the required attenuation we need to fulfil, in the transient design, the following constraint∣∣∣∣ 1

1 + L(jω)

∣∣∣∣
ω≤0.1

≤ 1

1000
⇒ |L(jω)|ω≤0.1 ≥ 60 dB

Transient design
We start the transient design with

L1(s) =
10

s

1 + 0.1s

1 + s

Magnitude Bode diagram of L1(s) is shown in Fig. 9, where we can see that the first trial does not satisfy the
requirement specifications.
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Figure 9: L1(s) magnitude Bode diagram.

The loop transfer function has to be reshaped in such a way that it has the same gain and type of L1(s) (same
low frequency behaviour), it has slope at least −1 at high frequency (regulator causality), and it does not enter
the forbidden region. As G(s) is the transfer function of a minimum phase system we decide to cross the 0 dB-axis
with slope −1 at 10 rad/s, the minimum crossover frequency that satisfies the requirement specifications. Doing
in this way we obtain the loop transfer function depicted in Fig. 10.
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Figure 10: L(s) magnitude Bode diagram.

The corresponding loop transfer function is

L(s) =
10

s

(1 + 100s)(1 + s)

(1 + 10s)2

which is characterised by

ωc = 10 rad/s

ϕc = −90o + arctan(100 · 10) + arctan(10)− 2 arctan(10 · 10) ≈ −94.6o

and finally

ϕm = 180o − |ϕc| ≈ 85.4o

The requirements on crossover frequency, phase margin and disturbance attenuation are all fulfilled.
The corresponding regulator is

R(s) =
L(s)

G(s)
=

10

s

(1 + 100s)(1 + s)

(1 + 10s)2
s

10

1 + s

1 + 0.1s
=

(1 + 100s)(1 + s)2

(1 + 0.1s)(1 + 10s)2

Exercise 4

Consider the following control system

where G(s) = 10
1− 0.1s

(1 + 10s)(1 + 0.01s)
.

Compute the transfer function R(s) of a controller in such a way that:

• |e∞| ≤ 0.02 for yo(t) = 5sca(t) and d(t) = 10sca(t);

• the phase margin ϕm is greater or equal to 75o;

• the crossover frequency ωc is greater or equal to 1 rad/s.
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Solution

Steady-state design
We start from the steady-state design, assuming that once the design will be completed the closed-loop system
will be asymptotically stable.
Using the superimposition principle we can decompose the steady-state error into two contributions, one due to
the reference

e∞yo = lim
s→0

s
1

1 + L(s)

5

s
= lim
s→0

5

1 + 10µr

sgr

= lim
s→0

5sgr

sgr + 10µr
=

5

1 + 10µr
gr = 0

and another one due to the disturbance

e∞d
= lim
s→0

s
1

1 + L(s)

10

s
= lim
s→0

10

1 + 10µr

sgr

= lim
s→0

10sgr

sgr + 10µr
=

10

1 + 10µr
gr = 0

Enforcing the steady-state requirements we obtain

|e∞| = |e∞yo + e∞d
| ≤ |e∞yo |+ |e∞d

| = 5

1 + 10µr
+

10

1 + 10µr
=

15

1 + 10µr
≤ 0.02 ⇒ µr ≥ 75

We complete the steady-state design assuming µr = 100, thus

R1(s) = 100

Transient design
We start the transient design with

L1(s) = 1000
1− 0.1s

(1 + 10s)(1 + 0.01s)

Magnitude Bode diagram of L1(s) is shown in Fig. 11.
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Figure 11: L1(s) magnitude Bode diagram.

Though the crossover frequency fulfils the requirements, having slope −2 at the crossover the phase margin cannot
fulfil it, we thus need to revise the design.
The loop transfer function has to be reshaped in such a way that it has the same gain and type of L1(s) (same low
frequency behaviour), it has slope at least −1 at high frequency (regulator causality), and crosses the 0 dB-axis
before the frequency of the zero in the right half plane, that cannot be cancel out, in order to limit as much as
possible its negative contribution to the phase. We decide to cross the 0 dB-axis with slope −1 at 1 rad/s, the
minimum crossover frequency that satisfies the requirement specifications, one decade before the frequency of the
zero. Doing in this way we obtain the loop transfer function depicted in Fig. 12.
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Figure 12: L(s) magnitude Bode diagram.

The corresponding loop transfer function is

L(s) = 1000
(1 + 10s)(1− 0.1s)

(1 + 100s)2(1 + 0.01s)

which is characterised by

ωc = 1 rad/s

ϕc = arctan(10)− arctan(0.1)− 2 arctan(100)− arctan(0.01) ≈ −100.8o

and finally

ϕm = 180o − |ϕc| ≈ 79.2o

The requirements on crossover frequency and phase margin are both fulfilled.
The corresponding regulator is

R(s) =
L(s)

G(s)
= 1000

(1 + 10s)(1− 0.1s)

(1 + 100s)2(1 + 0.01s)

(1 + 10s)(1 + 0.01s)

10(1− 0.1s)
= 100

(1 + 10s)2

(1 + 100s)2

Another solution that gives rise to a simpler regulator would be

L(s) = 1000
1− 0.1s

(1 + 1000s)(1 + 0.01s)

which is characterised by (Fig. 13)

ωc = 1 rad/s

ϕc = − arctan(0.1)− arctan(1000)− arctan(0.01) ≈ −96.3o

and finally

ϕm = 180o − |ϕc| ≈ 83.7o
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Figure 13: L(s) magnitude Bode diagram.

The requirements on crossover frequency and phase margin are both fulfilled.
The corresponding regulator is

R(s) =
L(s)

G(s)
= 1000

1− 0.1s

(1 + 1000s)(1 + 0.01s)

(1 + 10s)(1 + 0.01s)

10(1− 0.1s)
= 100

1 + 10s

1 + 1000s

Exercise 5

Consider the following control system

where G(s) = 10
e−5s

(1 + 10s)(1 + 0.1s)
.

Compute the transfer function R(s) of a controller in such a way that:

• |e∞| = 0 for yo(t) = 10sca(t);

• the phase margin ϕm is greater or equal to 65o;

• the crossover frequency is roughly maximized.

Solution

Steady-state design
We start from the steady-state design, assuming that once the design will be completed the closed-loop system
will be asymptotically stable.
The steady-state error due to the reference is

e∞ = lim
s→0

s
1

1 + L(s)

10

s
= lim
s→0

10

1 + 10µr

sgr

= lim
s→0

10
sgr

sgr + 10µr
= 0 gr = 1 ∀µr

We complete the steady-state design assuming µr = 1 and moving the selection of the controller gain to the
transient design, thus

R1(s) =
1

s
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Transient design
We start the transient design with

L1(s) = 10
e−5s

s(1 + 10s)(1 + 0.1s)

Magnitude Bode diagram of L1(s) is shown in Fig. 14.
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Figure 14: L1(s) magnitude Bode diagram.

Having slope −2 at the crossover and due to the effect of the delay, the phase margin cannot fulfil the requirements,
we thus need to revise the design.
The loop transfer function has to be reshaped in such a way that it has the same type of L1(s) (same slope at low
frequency), the gain have still to be selected, and it has slope at least −3 at high frequency (regulator causality).
Moreover, we must consider that the delay introduces a decrement in the phase that is proportional to the crossover
frequency.
We can cancel out all the poles of G(s), apart from the integrator, and introduce then a couple of high frequency
poles to achieve slope −3 without affecting the phase margin, that will be approximately equal to

ϕm = 180o − 90o − 5ωc
180o

π

Enforcing the constraint ϕm ≥ 65o we can roughly determine the maximum crossover frequency

ωc ≤
25o

5

π

180o
≈ 0.087 rad/s

we could thus select a crossover frequency equal to 0.06 rad/s.
Doing in this way we obtain the loop transfer function depicted in Fig. 15.
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Figure 15: L(s) magnitude Bode diagram.

The corresponding loop transfer function is

L(s) =
0.06

s(1 + s)2
e−5s

which is characterised by

ωc = 0.06 rad/s

ϕc = −90o − 2 arctan(0.06)− 0.06 · 5180

π
≈ −114o

and finally

ϕm = 180o − |ϕc| ≈ 66o

The requirements on phase margin is fulfilled and the crossover frequency is roughly maximised.
The corresponding regulator is

R(s) =
L(s)

G(s)
= 0.06

e−5s

s(1 + s)2
(1 + 10s)(1 + 0.1s)

10e−5s
= 0.006

(1 + 10s)(1 + 0.1s)

s(1 + s)2
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