
Control of Industrial and Mobile Robots

Prof. Rocco, Bascetta

January 15, 2020

SOLUTION

Control of Industrial and Mobile Robots
Prof. Luca Bascetta and Prof. Paolo Rocco

EXERCISE 1

1. Consider the manipulator sketched in the picture, where the mass of the second link is assumed to
be concentrated at the end-effector:

m
1
, I 1

m 2

l 1

Find the expression of the inertia matrix B(q) of the manipulator.

Denavit-Hartenberg frames can be defined as sketched in this picture:

m
1
, I 1

l 1

x 0

y 0

z 0

x 1

z 1

x 2

z 2

J 1

d 2

m 2

Computations of the Jacobians:

Link 1

J
(l1)
P =

[
j
(l1)
P1

0
]

=
[
z0 × (pl1 − p0) 0

]
=

 −l1s1 0
l1c1 0
0 0



J
(l1)
O =

[
j
(l1)
O1

0
]

=
[
z0 0

]
=

 0 0
0 0
1 0


Link 2

J
(l2)
P =

[
j
(l2)
P1

j
(l2)
P2

]
=
[
z0 × (pl2 − p0) z1

]
=

 −a1s1 − d2c1 −s1
a1c1 − d2s1 c1

1 0


For the above computations, we can make reference to the following picture:

x
0

y
0

J
1

d
2

a
1

z
1

and to the following auxiliary vectors:

pl1 =

 l1c1
l1s1

0

 ,pl2 =

 a1c1 − d2s1
a1s1 + d2c1

?

 ,p1 =

 a1c1
a1s1

0

 , z1 =

 −s1c1
0


The inertia matrix can be computed now:

B(q) = m1J
(l1)T

P J
(l1)
P + I1J

(l1)T

O J
(l1)
O +m2J

(l2)T

P J
(l2)
P +

= m1

[
l21 0
0 0

]
+ I1

[
1 0
0 0

]
+m2

[
a21 + d22 a1
a1 1

]
=

[
b11 b12
b12 b22

]
where:

b11 = m1l
2
1 + I1 +m2

(
a21 + d22

)
b12 = m2a1

b22 = m2

2. Compute the matrix C(q, q̇) of the Coriolis and centrifugal terms1 for this manipulator.

The only derivative in the Christoffel symbols which is different from zero is:

∂b11
∂q2

= 2m2d2

therefore

c111 = 0 c211 = −1
2
∂b11
∂q2

= −m2d2

c112 = c121 = 1
2
∂b11
∂q2

= m2d2 c212 = c221 = 0

c112 = 0 c222 = 0

The matrix of the Coriolis and centrifugal terms is thus:

C =

[
c11 c12
c21 c22

]
where:

c11 = c111q̇1 + c112q̇2 = m2d2ḋ2

c12 = c121q̇1 + c122q̇2 = m2d2ϑ̇1

c21 = c211q̇1 + c212q̇2 = −m2d2ϑ̇1

c22 = c221q̇1 + c222q̇2 = 0

3. Check that matrix N(q, q̇) = Ḃ(q)− 2C(q, q̇) is skew symmetric.

We have that:

N(q, q̇) = Ḃ(q)− 2C(q, q̇) =

[
2m2d2ḋ2 0

0 0

]
− 2

[
m2d2ḋ2 m2d2ϑ̇1
−m2d2ϑ̇1 0

]
=

[
0 −2m2d2ϑ̇1

2m2d2ϑ̇1 0

]
which is a skew-symmetric matrix.

4. Cite one case in robotics where the property that matrix N(q, q̇) is skew symmetric is used.

This property is used for example in the proof of stability of the PD + gravity compensation
controller.

EXERCISE 2

1The general expression of the Christoffel symbols is cijk = 1
2

(
∂bij
∂qk

+ ∂bik
∂qj

− ∂bjk
∂qi

)

1. Consider the generation of a position trajectory in the Cartesian space. Select as an initial point

pi =

 3
1
1

 and as a final point pf =

 0
1
5

. Write the expression of a segment connecting the

initial and the final points, parameterized with the natural coordinate.

The general expression of the segment is:

p(s) = pi +
s

‖pf − pi‖
(pf − pi)

Since:

pf − pi =

 −3
0
4

 , ‖pf − pi‖ = 5

we have:

p(s) =

 3
1
1

+
s

5

 −3
0
4



2. Assume a travel time T = 2s. Design a trajectory, which covers the path determined in the previous
step, using a cubic dependence on time.

We need to find the coefficients of the polynomial:

s(t) = a0 + a1t+ a2t
2 + a3t

3

with the boundary conditions:
s(0) = 0 s(2) = 5
ṡ(0) = 0 ṡ(2) = 0

From the conditions at t = 0, we easily obtain a0 = a1 = 0. From the conditions at t = 2 we obtain
the linear system:

4a2 + 8a3 = 5

4a2 + 12a3 = 0

and then:

a2 = 15/4

a3 = −5/4

Then the expression of the cubic polynomial is:

s(t) =
15

4
t2 − 5

4
t3

3. Compute the maximum linear velocity of the end effector along the trajectory designed in the
previous step. Check whether this maximum value exceeds a maximum admissible velocity of 2 m/s.
In case, explain (without going through the computations) how you would modify the trajectory
generation.

The maximum linear velocity corresponds to the maximum value of the derivative of function s(t):

‖ṗ‖max = ṡmax = ṡ(1) =
30

4
− 15

4
= 3.75

Since the obtained maximum velocity is higher than the maximum admissible value, the time law
has to be scaled, by suitably extending the positioning time.

4. Suppose that the manipulator is kinematically redundant for the task of end effector positioning.
Write the expression of the inverse kinematics based on the weighted pseudo-inverse matrix and
explain what is the optimization problem solved with this approach. Also explain what might be
the reason to use the weighted pseudo-inverse instead of the standard pseudo-inverse matrix.

The expression of the inverse kinematics is:

q̇ = J]
W ṗ

where J]
W is the weighted pseudo-inverse matrix of the Jacobian, defined as:

J]
W = W−1JT

(
JW−1J

)−1

This solution solves an optimization problem, where the cost function to be minimized is:

g(q̇) =
1

2
q̇TWq̇

subject to the constraint:
ṗ− Jq̇ = 0

If W is diagonal, it can be used to relatively weigh the joint velocities (a large Wi corresponds to a
small q̇i).

EXERCISE 3

1. Write and explain the pseudocode of the algorithm to construct the probabilistic roadmap used by
PRM.

The PRM algorithm to construct the roadmap follows:

V ← ∅;
E ← ∅;
for i = 1, . . . , N do

qrand ← SampleFreei;
U ← Near (G,qrand, r);
V ← V ∪ {qrand};
foreach u ∈ U in order of increasing ‖u− qrand‖ do

if qrand and u are not in the same connected component of G then
if CollisionFree (qrand,u) then

E ← E ∪ {(qrand,u)};
end

end

end

end
return G = (V,E)

N vertex are sampled from the free space, then for each vertex qrand the set of near nodes, i.e., the
set of nodes in a ball of radius r centred in qrand, is computed and all the collision free connections
between qrand and the nodes in the near node set that are not in the same connected component
are generated.

2. Explain how the previous algorithm has to be modified in order to obtain sPRM and PRM? al-
gorithms.

The only difference between sPRM and PRM is that sPRM connects all the nodes in the near node
set, without checking if they are in the same connected component.
The sPRM algorithm to construct the roadmap follows:

V ← {qinit} ∪ {SampleFreei, i = 1, . . . , N};
E ← ∅;
foreach v ∈ V do

U ← Near (G,v, r) \ {v};
foreach u ∈ U do

if CollisionFree (v,u) then
E ← E ∪ {(v,u)};

end

end

end
return G = (V,E)

The only difference between PRM and PRM? is in the way the near set is computed. In PRM? the
radius of the near neighbourhood is related to the number of sampled nodes, i.e.,

U ← Near
(
G,qrand, γPRM (log (N) /N)1/d

)
\ {qrand}

where d is the dimension of the configuration space, and γPRM is a suitable constant.

3. After the execution of some iterations of PRM algorithm we have the situation depicted below

where the black dots are the nodes sampled in previous iterations, the red dot is the node sampled in
the actual iteration, the green blobs are obstacles and the black dashed circle is the neighbourhood
considered to defined the Near set.
Draw in the left picture the result of an iteration of PRM and in the right picture the result of an
iteration of sPRM.

The result of an iteration of PRM (left picture) and of sPRM (right picture) is shown in the pictures
below

4. What is the main difference between PRM (or sPRM or PRM?) and RRT (or RRT?)?

The main difference between PRM/sPRM/PRM? and RRT/RRT? is that the first are multiple
query algorithms, while the second are single query algorithms.
In fact, PRM/sPRM/PRM? consist of two phases, the roadmap construction and the query phase,
and on the same roadmap multiple queries, from different starting to different goal positions, can
be performed.

With RRT/RRT?, instead, each execution of the algorithm is related to a specific starting/goal
query.

EXERCISE 4

1. What is the canonical simplified model for nonholonomic mobile robots? Why is it important in the
context of designing a controller for a nonholonomic robot?

The canonical simplified model is a way to unify in a single model the unicycle, differential drive and
bicycle kinematic models, in order to apply the same controller design procedure to the different
kinematic models. The canonical simplified model has the following expression

ẋ = v cos θ

ẏ = v sin θ

θ̇ = ω

2. Show how the unicycle, differential drive, and rear-wheel drive bicycle kinematic models can be
made equivalent to the canonical model.

The canonical model is the model of a unicycle robot.
The differential drive model can be reduced to the unicycle model applying the following transform-
ation

ωR =
v + ωd/2

r
ωL =

v − ωd/2
r

where ωR and ωL are the right and left wheel velocities, r is the wheel radius, and d is the distance
between left and right wheel contact point.
For the rear-wheel drive bicycle we need to assume that the steering rate limit is so high that the
steering angle can be changed instantaneously, then the bicycle model can be reduced to the unicycle
model applying the following transformation

v = v φ = arctan

(
ω`

v

)
where φ is the steering angle and ` the length of the bicycle.

3. Consider a bicycle kinematic model without reverse. Show how the actuation constraints 0 ≤ v ≤ vM
and −φM ≤ φ ≤ φM can be rewritten in terms of the canonical model input variables.

Considering the transformation for the bicycle

v = v φ = arctan

(
ω`

v

)
and assuming that arctan (x) ≈ x, we have

0 ≤ v ≤ vM − φM ≤
ω`

v
≤ φM

The second constraint can be rewritten as two separate constraints as follows

ω ≤ φM
`
v ω ≥ −φM

`
v

4. Considering a reference point P on the chassis of the robot, derive a control law for the canonical
model that allows to reduce it to two independent double integrators.

Assuming (x, y, θ) is the pose of the robot and xr, yr are the coordinates of point P in the robot
reference frame, the absolute coordinates of this point are given by[

xP
yP

]
=

[
x
y

]
+

[
cos θ − sin θ
sin θ cos θ

] [
xr
yr

]
Differentiating this relation we obtain[

ẋP
ẏP

]
=

[
ẋ
ẏ

]
+ θ̇

[
− sin θ − cos θ
cos θ − sin θ

] [
xr
yr

]
Substituting then the canonical model equations and solving for v and ω[

v
ω

]
=

1

xr

[
xr cos θ − yr sin θ xr sin θ + yr cos θ

− sin θ cos θ

] [
ẋP
ẏP

]

