
Prof. Luca Bascetta (luca.bascetta@polimi.it)

Politecnico di Milano
Dipartimento di Elettronica, Informazione e Bioingegneria

Automatic Control
Control system technologies for automation
Control system design, communication systems, Programmable Logic Controllers

mailto:luca.bascetta@polimi.it

Prof. Luca BascettaProf. Luca Bascetta

Motivations (I)

In the design and realization of factory automation and process control
systems many aspects should be considered, ranging from the design of the
system architecture to the selection of the communication network, and the
suitable hardware and software platforms.
Even focusing only on the control system, in a complex plant we must
control either continuous time physical quantities and action sequencing.

For these reasons we will face the fundamental aspects of:
• communication systems
• fieldbus network systems
• Programmable Logic Controllers
• Real-time systems

2

Prof. Luca BascettaProf. Luca Bascetta

Motivations (II) 3

Prof. Luca BascettaProf. Luca Bascetta

Communication systems (I)

In a control system composed by a control unit and a few sensors and
actuators, communication can be performed using analog voltage/current
signals.

What happens, however, if we have many control units connected to many
sensors/actuators?
Instead of using an analog point-to-point connection, we can choose a
digital bus communication system connecting all the sensors/actuators to
one or more control units.
Using this communication system
has obvious advantages:
• simpler and less expensive cabling
• flexibility
• adding/removing devices is easier
• resource sharing
• redundancy
• distributed functionalities

4

Prof. Luca BascettaProf. Luca Bascetta

Communication systems (II)

There are also some disadvantages of using bus communication systems:
• devices are more expensive
• it is not easy to connect together devices from different manufacturers
• more complex design methodologies

We will now first introduce some fundamentals of communication networks,
and then analyze the most important buses used in control systems.

5

Prof. Luca BascettaProf. Luca Bascetta

Communication systems (III)

A computer network is a system constituted by two or more computers
exchanging data through a communication network.

One important characteristic of a network is its topology, the layout or
organizational hierarchy of the interconnected nodes.
Different network topologies exist, each one characterized by a different
throughput and reliability. In general the more interconnections there are,
the more robust the network is; but the more expensive it is to install.

6

Prof. Luca BascettaProf. Luca Bascetta

Communication systems (IV)

Another important characteristic is the network protocol, the set of rules
used for exchanging information over network links.
Protocols are organized in a hierarchical way in a protocol stack. In this way
each protocol leverages the services of the protocol below it.

A conceptual model that standardizes the communication functions of a
communication network, without regard to their underlying internal structure
and technology, is the Open Systems Interconnection model (OSI model).
The model partitions a communication system into seven abstraction layers.
A layer serves the layer above it and is served by the layer below it.
The model is a product of the Open Systems Interconnection project at the
International Organization for Standardization (ISO), maintained by the
ISO/IEC 7498-1 standard.

7

Prof. Luca BascettaProf. Luca Bascetta

Communication systems (V) 8

Prof. Luca BascettaProf. Luca Bascetta

Not all the seven layers need to be implemented.
In the case of control systems the most used levels are: physical, data link
and application.

Communication systems (VI) 9

OSI layer Protocol Data Unit Function
Application

Data

High-level APIs, including resource sharing, remote file
access, directory services and virtual terminals

Presentation Translation of data between a networking service and an
application; including character encoding, data
compression and encryption/decryption

Session Managing communication sessions, i.e. continuous
exchange of information in the form of multiple back-and-
forth transmissions between two nodes

Transport Segment (TCP)
Datagram (UDP)

Reliable transmission of data segments between points on
a network, including segmentation, acknowledgement and
multiplexing

Network Packet Structuring and managing a multi-node network, including
addressing, routing and traffic control

Data link Frame Reliable transmission of data frames between two nodes
connected by a physical layer

Physical Bit Transmission and reception of raw bit streams over a
physical medium

Prof. Luca BascettaProf. Luca Bascetta

Communication systems – Example

Let’s use the OSI model to describe the Internet protocol.

Let’s know analyze the functionalities of the layers that are most important
in control systems.

10

Layer Implementation
Application Internet protocol suite (telnet, FTP, SMTP, HTTP,…)
Presentation
Session
Transport TCP (Transmission Control Protocol)

UDP (User Datagram Protocol)
Network IP (Internet protocol)
Data link Not specified (usually Ethernet)
Physical

Prof. Luca BascettaProf. Luca Bascetta

Communication systems (VII)

Physical layer
The physical layer has the following major functions:
• it defines the electrical and physical specifications of the data connection
• it defines the relationship between a device and a physical transmission

medium (e.g., a copper or fiber optical cable, radio frequency). This
includes the layout of pins, voltages, line impedance, cable
specifications, signal timing and similar characteristics for connected
devices, and frequency (5 GHz or 2.4 GHz etc.) for wireless devices

• it defines transmission mode, i.e. simplex, half duplex, full duplex
• it defines the network topology

11

Prof. Luca BascettaProf. Luca Bascetta

Communication systems (VIII)

Typical transmission medium are:
• twisted pair wires

• two conductors twisted together for the purpose
of canceling out electromagnetic interference

• can be shielded or unshielded
• used for telephone, modem lines, Ethernet
• mid-high speed (up to 100 Mbps in local area networks)

• coaxial cable
• an inner conductor surrounded by a tubular insulating

layer, surrounded by a tubular conducting shield
• mid-high speed (up to 100 Mbps in local area networks)

• optical fiber
• transparent fiber made by drawing glass (silica) or

plastic to a diameter slightly thicker than that of a
human hair

• permits transmission over longer distances and at
higher bandwidths (data rates) than wire cables, but is
more expensive

12

Prof. Luca BascettaProf. Luca Bascetta

Communication systems (IX)

Bits are transmitted through the physical medium using a line code.
Line coding consists of representing the digital signal to be transported, by a
waveform that is optimally tuned for the specific properties of the physical
channel.
The common types of line encoding are:
• non-return-to-zero (NRZ), is a binary code in which

ones are represented by a positive voltage, while
zeros are represented by a negative voltage, with
no other neutral or rest condition

• return-to-zero (RZ), the signal drops (returns) to
zero between each pulse

• Manchester, the encoding of each data bit is either
low then high, or high then low, of equal time (it is
self-clocking)

13

Prof. Luca BascettaProf. Luca Bascetta

Communication systems (X)

Bits can be transmitted through the physical medium using a frequency
modulation technique.

For example the HART protocol uses the FSK method (Frequency Shift
Keying) to encode bits.
The two digital values “0” and “1” are assigned to the following frequencies:
• logical “0”, 2200 𝐻𝐻𝐻𝐻 sinusoidal signal
• logical “1”, 1200 𝐻𝐻𝐻𝐻 sinusoidal signal

14

Prof. Luca BascettaProf. Luca Bascetta

Communication systems (XI)

Let’s consider now some examples of electrical specifications:
• EIA RS-232C

• is one of the oldest standard, but is still in use
• maximum transmission distance: 15 𝑚𝑚
• maximum transmission speed: 20 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘/𝑠𝑠
• 3 wires: GND (ground), TXD (transmit), RXD (receive)

• EIA RS-422
• maximum transmission speed: 115 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘/𝑠𝑠 up to 1200 𝑚𝑚, or 10 𝑀𝑀𝑏𝑏𝑏𝑏𝑏𝑏/𝑠𝑠 up to

12 𝑚𝑚
• differential (instead of single-ended) transmission
• no more than 10 receivers

• EIA RS-485
• maximum transmission speed and distance equivalent to RS-422
• up to 32 transmitters and 32 receivers
• transmitters can disconnect from the network

15

Prof. Luca BascettaProf. Luca Bascetta

Communication systems (XII)

As previously mentioned we can have different transmission modes:
• simplex, data can be sent only through one direction (unidirectional

communication)
• half duplex, data can be sent in both directions but it is done one at a

time (when the sender is sending data, then at that time the receiver
cannot send the sender a message)

• full duplex, data can be sent in both directions simultaneously
(bidirectional communication)

Finally, data transmission can be synchronous or asynchronous.

16

Prof. Luca BascettaProf. Luca Bascetta

Communication systems (XIII)

Asynchronous communication is
transmission of data blocks, generally
without the use of an external clock
signal, coded as words of a certain
word length (e.g., 8 bytes or ASCII
characters).

Synchronous communication requires
that the clocks in the transmitting and
receiving devices are synchronized,
so the receiver can sample the signal
at the same time intervals used by
the transmitter. No start or stop bits
are required. For this reason
synchronous communication allows
more information to be passed over
a circuit per unit time than
asynchronous communication.

17

Prof. Luca BascettaProf. Luca Bascetta

Communication systems (XIV)

Data link layer
Data link layer provides node-to-node data transfer, and
• it detects and possibly corrects errors that may occur in the physical

layer
• it defines the protocol to establish and terminate a connection between

two physically connected devices
• it also defines the protocol for flow control between them

IEEE 802 divides the data link layer into two sublayers:
• Media Access Control (MAC) layer, responsible for controlling how

devices in a network gain access to medium and permission to transmit
• Logical Link Control (LLC) layer, responsible for identifying Network layer

protocols and then encapsulating them. It controls error checking and
frame synchronization

The MAC and LLC layers of IEEE 802 networks such as 802.3 Ethernet,
802.11 Wi-Fi, and 802.15.4 ZigBee, operate at the data link layer level.

18

Prof. Luca BascettaProf. Luca Bascetta

Communication systems (XV)

The MAC sublayer provides addressing and channel access control
mechanisms that make it possible for several terminals or network nodes to
communicate within a multiple access network that incorporates a shared
medium.

Examples of common multiple access protocols for wired networks are:
• CSMA/CD (used in Ethernet and IEEE 802.3)
• Token bus (IEEE 802.4)
• Token ring (IEEE 802.5)
• Token passing (used in FDDI)

19

Prof. Luca BascettaProf. Luca Bascetta

Communication systems (XVI)

Carrier Sense Multiple Access with Collision Detection (CSMA/CD)
• if the medium is idle any node can start a transmission at any time
• the transmitter monitors for collisions during transmission and, if a collision is

detected, the frame is transmitted again
• not suitable for real-time applications as no bound on the transmission delay

exists (due to the retransmission mechanism)
• when the protocol is used with fast Ethernet links this issue is less important

Token bus/token ring/token passing
• uses a special frame called a “token” that travels around a logical “ring”
• token passing is a channel access method providing fair access for all nodes,

and eliminating the collision problem
• there can be master and slave nodes (slave nodes transmit only when asked by

a master node)
• access is more deterministic compared to CSMA/CD

Another way to control the access to the network is by using an arbiter.
Arbiters are electronic devices that allocate access to shared resources (in this case
the physical medium).

20

Prof. Luca BascettaProf. Luca Bascetta

Communication systems – Example (I)

Let’s consider, as an example, Ethernet.
• it was developed at Xerox PARC between 1973 and 1974
• Ethernet protocol includes levels 1 and 2 of the OSI model
• many different physical medium were used during time

• coaxial cable with extra braided shielding (thick Ethernet), 10 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀/𝑠𝑠 up to
500 𝑚𝑚

• coaxial cable (thin Ethernet), 10 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀/𝑠𝑠 up to 200 𝑚𝑚
• twisted pair (twisted pair Ethernet), 10 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀/𝑠𝑠 up to 500 𝑚𝑚
• twisted pair (fast Ethernet), 100 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀/𝑠𝑠 up to 100 𝑚𝑚
• optical fiber, 10 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀/𝑠𝑠 up to 2 𝐾𝐾𝑚𝑚
• Gigabit Ethernet, 1 𝐺𝐺𝑏𝑏𝑏𝑏𝑏𝑏/𝑠𝑠 up to 100 𝐾𝐾𝐾𝐾 (single-mode optical fiber)

• signals are transmitted using Manchester encoding
• different network topologies
• MAC layer: CSMA/CD
• LLC layer: frame Ethernet II

21

Prof. Luca BascettaProf. Luca Bascetta

Communication systems – Example (II) 22

Synchronization pattern

Start of Frame Delimiter

Values of 1500 and below mean that it
is used to indicate the size of the
payload, while values of 1536 and
above indicate that it is used as an
EtherType, to indicate which protocol
is encapsulated in the payload of the
frame

Frame Check Sequence: CRC that
allows detection of corrupted data

Prof. Luca BascettaProf. Luca Bascetta

Communication systems – Example (III)

MAC address is the address assigned to each Ethernet card.
It is a 48-bit address composed by:
• a 24-bit Organizational Unique Identifier (OUI), identifies the organization

that issued the identifier
• a 24-bit Network Interface Controller (NIC), assigned by that organization

in nearly any manner they please, subject to the constraint of uniqueness

23

Prof. Luca BascettaProf. Luca Bascetta

Fieldbus (I)

Fieldbus is an industrial network system for real-time distributed control,
connecting together sensors, actuators and controllers.
Fieldbus is the equivalent of LAN-type connections, which require only one
communication point at the controller level and allow multiple of analog and
digital points to be connected at the same time, while 4-20 mA
communication requires that each device have its own communication point
at the controller level.
Length of cables and number of cables required are both reduced.
Fieldbus is a good solution to send small amount of information having real-
time constraints.
There were many competing technologies for fieldbus and the original hope
for one single unified communication mechanism has not been realized.
This should not be unexpected since fieldbus technology needs to be
implemented differently in different applications.
With reference to the OSI model, fieldbus standards are determined by the
physical media of the cabling, and layers one, two and seven of the
reference model.

24

Prof. Luca BascettaProf. Luca Bascetta

Fieldbus (II)

IEC 61158 specification includes eight different standard protocol sets
called “Types” as follows:
• Type 1: Foundation Fieldbus H1
• Type 2: ControlNet
• Type 3: PROFIBUS
• Type 4: P-Net
• Type 5: FOUNDATION fieldbus HSE (High Speed Ethernet)
• Type 6: SwiftNet (a protocol developed for Boeing, since withdrawn)
• Type 7: WorldFIP
• Type 8: Interbus

FOUNDATION Fieldbus and PROFIBUS PA are the most common
solutions for process control. They share the same physical layer but are
not interchangeable.
PROFIBUS DP is a common solution for factory automation, and CAN for
automotive applications.

25

Prof. Luca BascettaProf. Luca Bascetta

Fieldbus (III)

PROFIBUS (Process Field Bus) is a standard for fieldbus communication in
automation technology and was first promoted in 1989 by BMBF (German
department of education and research) and then used by Siemens.
PROFIBUS is openly published as part of IEC 61158.

There are two variations of PROFIBUS in use today:
• PROFIBUS DP (Decentralized Peripherals) is used to operate sensors

and actuators via a centralized controller in production (factory)
automation applications

• PROFIBUS PA (Process Automation) is used to monitor measuring
equipment via a process control system in process automation
applications

PROFIBUS DP is the most commonly used.
It is based on a RS-485 or a fiber optics communication and defines levels 1
and 2 of the OSI model. It defines also user profiles that can be used to
describe properties and behavior of the devices connected to the network.

26

Prof. Luca BascettaProf. Luca Bascetta

Fieldbus (IV) 27

Class 1 masters
always connected

Class 2 master
occasionally
connected for
configuration
purposes

Prof. Luca BascettaProf. Luca Bascetta

Fieldbus (V)

A Controller Area Network (CAN bus) is a vehicle bus standard designed to
allow a real-time serial communication.
Development of the CAN bus started in 1983 at Robert Bosch GmbH, the
protocol was officially released in 1986.
CAN is a multi-master serial bus standard to connect controllers, sensors
and actuators at a speed up to 1 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀/𝑠𝑠.
It has many advantages:
• low design and realization costs
• suitable for harsh environments (mechanical vibrations, electromagnetic

disturbances,…)
• easily configurable
• automatic error detection
In industrial automation there are two versions of CAN bus in use today:
• CANOPEN
• DeviceNet

28

Prof. Luca BascettaProf. Luca Bascetta

Fieldbus (VI)

At physical level CAN bus has the following characteristics:
• shielded twisted pair wires are used
• two different transmission speeds can be adopted

• low speed: 125 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘/𝑠𝑠, up to 40 𝑚𝑚, from 2 to 20 nodes
• high speed: from 125 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘/𝑠𝑠 to 1 𝑀𝑀𝐵𝐵𝐵𝐵𝐵𝐵/𝑠𝑠, up to 40 𝑚𝑚, from 2 to 30

nodes
• error correction is performed retransmitting every message until all the

receivers received it without errors

At data link level CAN bus has the following characteristics:
• broadcast communication
• each message includes a unique

node identifier which also
represents the message priority

• every node receives all messages
and selects the ones including its
identifier

29

Prof. Luca BascettaProf. Luca Bascetta

Fieldbus (VII)

CAN data transmission uses a lossless bit-wise arbitration method of
contention resolution.
CAN specifications use the terms “dominant” bits and “recessive” bits,
where dominant is a logical 0 and recessive is a logical 1.
If one node transmits a dominant bit and another node transmits a recessive
bit then there is a collision and the dominant bit “wins”.
This means there is no delay to the higher-priority message, and the node
transmitting the lower priority message becomes a receiver and
automatically attempts to re-transmit after the end of the dominant
message.
This makes CAN very suitable as a real-time prioritized communication
system.

Let’s see an example.

30

Prof. Luca BascettaProf. Luca Bascetta

Fieldbus (VIII)

If a logical 1 is transmitted by all transmitting nodes at the same time, then a logical 1 is seen
by all nodes, including both the transmitting nodes and receiving nodes.
If a logical 0 is transmitted by all transmitting nodes at the same time, then a logical 0 is seen
by all nodes.
If a logical 0 is transmitted by one or more nodes, and a logical 1 is transmitted by one or more
nodes, then a logical 0 is seen by all nodes including the nodes transmitting the logical 1.
When a node transmits a logical 1 but sees a logical 0, it realizes that there is a contention and
it quits transmitting.
By using this process, any node that transmits a logical 1 when another node transmits a
logical 0 loses the arbitration. This means that the node that transmits the first 1 loses
arbitration. The node with the lowest identifier transmits more zeros at the start of the frame,
and that is the node that wins the arbitration or has the highest priority.

31

Start
Bit

ID Bits Rest of
frame10 9 8 7 6 5 4 3 2 1 0

Node 15 0 0 0 0 0 0 0 0 1 1 1 1

Node 16 0 0 0 0 0 0 0 1 Stopped transmitting

CAN data 0 0 0 0 0 0 0 0 1 1 1 1

Prof. Luca BascettaProf. Luca Bascetta

Fieldbus (IX)

We conclude this part mentioning industrial Ethernet that, in the last years,
is rapidly spreading in factory automation and process control.
Industrial Ethernet refers to the use of standard Ethernet protocols with
rugged connectors and extended temperature switches in an industrial
environment.
Different protocols exist that make Ethernet suitable for a real-time fieldbus
communication system:
• EtherCAT
• EtherNet/IP
• Powerlink
• PROFINET
• SERCOS III

32

Prof. Luca BascettaProf. Luca Bascetta

Programmable Logic Controllers (I)

A process automation system is constituted by many different controllers.
Part of them are digital control systems, i.e., PIDs, used to control
continuous time physical quantities.
Another important part is constituted by devices used to control action
sequencing, safety interlock logics, etc. This devices are called
Programmable Logic Controllers (PLCs).
Action sequencing, for example, is the control of a set of actions, triggered
by events, that should be executed in the correct order (e.g., a robot taking
parts from a conveyor belt).

It is rather common that the automation system is organized in hierarchical
layers, e.g., the highest level is constituted by one or more PLCs doing
action sequencing, the lowest by one or more digital control systems
controlling the execution of each action.

33

Prof. Luca BascettaProf. Luca Bascetta

Programmable Logic Controllers (II)

As for continuous time control systems, we need to introduce formal
methodologies for
• writing requirements specification
• design an action sequencing control system

For requirements specification, suitable formal languages can be used (we
will not discuss this aspect).
To devise a design methodology, one should make reference to discrete
event system theory.

A discrete event system is a dynamical system characterized by
• the state space is discrete (each state variable takes value in a discrete

set)
• the state evolution depends entirely on the occurrence of asynchronous

discrete events over time
A classical example is a line of people who are waiting at a counter, where
the state is the number of people in the line and the events are represented
by people leaving or joining the line.

34

Prof. Luca BascettaProf. Luca Bascetta

Programmable Logic Controllers (III)

Discrete event systems can be modelled using finite state automata and
Petri nets.

We will not discuss the details of discrete event system theory.
Instead we will introduce the fundamentals of PLCs and PLC programming
languages.

35

Prof. Luca BascettaProf. Luca Bascetta

Programmable Logic Controllers (IV)

We start describing the components
of a PLC.

36

Prof. Luca BascettaProf. Luca Bascetta

Programmable Logic Controllers (V)

A PLC program is generally executed repeatedly, every 𝑇𝑇𝐶𝐶 milliseconds, as
long as the controlled system is running, and is constituted by the following
steps:
• the status of physical inputs is copied to an area of memory accessible to

the processor (I/O Image Table)
• the user program is run from its first instruction rung down to the last

rung, and the I/O image table is updated with the status of outputs
• operating system services are executed
• the status of outputs is copied from the I/O image table to physical

outputs

𝑇𝑇𝐶𝐶 is called cycle time and is related to the specific application.
The previous steps are executed as a sequence of instructions, as a
consequence the input signals can be acquired only at the beginning of the
PLC cycle (no input variations during the cycle time can be detected).

37

Prof. Luca BascettaProf. Luca Bascetta

Programmable Logic Controllers (VI)

Under the IEC 61131-3 standard, PLCs can be programmed using
standards-based programming languages.
IEC 61131-3 currently defines five programming languages for
programmable control systems:
• Function Block Diagram (FBD)
• Ladder Diagram (LD)
• Sequential Functional Chart (SFC)
• Structured Text (ST)
• Instruction List (IL)

FBD, LD and SFC are graphical programming languages.
ST and IL are text programming languages.

We will now introduce the first PLC programming language, the Ladder
Diagram.

38

Prof. Luca BascettaProf. Luca Bascetta

Programmable Logic Controllers (VII)

Ladder logic was originally a written method to document the design and
construction of relay racks as used in manufacturing and process control.
Ladder logic has then evolved into a programming language that represents
a program by a graphical diagram based on the circuit diagrams of relay
logic hardware.

Ladder logic has contacts that make or break circuits to control coils. Each
coil or contact corresponds to the status of a single bit in the programmable
controller's memory.

The language, initially devised only for Boolean functions, has been then
extended in order to support integer and real functions as well.

The motivation for representing sequential control logics in a ladder diagram
was to allow factory engineers and technicians to develop software without
additional training to learn a programming language.

39

Prof. Luca BascettaProf. Luca Bascetta

Programmable Logic Controllers (VIII)

A ladder diagram is constituted by:
• two vertical rails, a power supply wire on the left and a ground wire on

the right
• a set of rungs that typically has one or more contacts on the left side and

one or more coils on the right side
• current can only flow from power supply (left rail) to ground (right rail)
• logical variables are associated to each contact and coil
• rungs are executed from the top to the bottom of the ladder diagram
• if a path can be traced between the left side of the rung and ground,

through closed contacts, the rung is true and the output coil storage bit is
asserted (1), otherwise is false (0)

Let’s now introduce the main components of a ladder diagram.

40

Prof. Luca BascettaProf. Luca Bascetta

Programmable Logic Controllers (IX)

Rung input:
--| |-- a regular contact, if the corresponding bit is asserted the contact is closed

(open contact at rest)
--|/|-- a "not" contact, if the corresponding bit is asserted the contact is open

(closed contact at rest)
--|P|-- rising edge contact, if the corresponding bit makes a low-to-high transition the

contact is closed for one cycle
--|N|-- falling edge contact, if the corresponding bit makes a high-to-low transition

the contact is closed for one cycle

Rung output:
--()-- a regular coil, energized (bit asserted) whenever its rung is closed (inactive at

rest)
--(/)-- a "not" coil, energized (bit asserted) whenever its rung is open (active at rest)
--(L)-- latch coil, energized (bit asserted) whenever its rung is closed, it keeps

energized until an unlatch coil associated to the same bit is energized
--(U)-- unlatch coil, energized (bit set to 0) whenever its rung is closed, it keeps

energized until a latch coil associated to the same bit is energized

41

Prof. Luca BascettaProf. Luca Bascetta

Programmable Logic Controllers – Examples

a b x
|----| |----| |----()----| x = a AND b

a b x
|----| |----|/|----()----| x = a AND NOT b

a x
|----| |----+----()----| x = a OR b
| b |
|----| |----+

a b x
|---| |---|/|---+----()----| x = a XOR b
| a b |
|---|/|---| |---+

42

Prof. Luca BascettaProf. Luca Bascetta

Programmable Logic Controllers (X)

Additional functionalities includes timers (used to delay actions) and
counters (used to count events and trigger actions when predefined values
are reached).

Timer
• if the timer is energized it starts counting
• when the PresetValue is reached variable TimerName

is asserted and remains set until the timer is de-
energized

• otherwise variable TimerName is set to 0

Retentive timer
• when timer is de-energized it stops counting but it is

not reset
• when timer is energized again it starts counting from

the last value
• to reset the timer a suitable command is used

TimerName
---(RES)---

43

+-------------------+
| T |

---| TimerName |---
| PresetValue |
+-------------------+

+-------------------+
| RT |

---| TimerName |---
| PresetValue |
+-------------------+

Prof. Luca BascettaProf. Luca Bascetta

Programmable Logic Controllers (XI)

Counter
• is similar to the retentive timer
• counts the low-to-high transitions on the input line up

to the PresetValue
• when the PresetValue is reached, variable

CounterName is asserted and remains set until the
counter is reset

• to reset the counter a suitable command is used
CounterName

---(RES)---

Finally, we can introduce jumps in the ladder using the following
instructions:
---(JMP)--- if coil JMP is energized the execution jumps to the rung
---|LBL|--- immediately after the rung that includes LBL (no other

instructions can be put on this rung)

44

+---------------------+
| CU |

---| CounterName |---
| PresetValue |
+---------------------+

Prof. Luca BascettaProf. Luca Bascetta

a then
---		---+-----------------(JMP)---
d		
---		---+
d x		
---		---+-----------------()---
c		
---		---+
x y		
---	/	----------------------()---
endif		
---------------------------(JMP)---		
then		
---	LBL	----------------------------
b x		
---		----------------------()---
a y		
---		----------------------()---
endif		
---	LBL	----------------------------

Programmable Logic Controllers – Examples (I)

This ladder diagram implements the following
code

if (a OR d)
{

x = b;
y = a;

}
else
{

x = d OR c;
y = NOT x;

}

45

Prof. Luca BascettaProf. Luca Bascetta

A set-reset flip-flop is a circuit that has two stable states and can be used to
store state information.
The output of the flip-flop is asserted (1) if there is a
low-to-high transition on S (set) and remains asserted
until R (reset) is set to 1.
The set-reset flip-flop is equivalent to the following equation

𝑄𝑄 = 𝑁𝑁𝑁𝑁𝑁𝑁 𝑅𝑅 𝐴𝐴𝐴𝐴𝐴𝐴 (𝑄𝑄 𝑂𝑂𝑂𝑂 𝑆𝑆)
It can be implemented using the following ladder diagram

This diagram can be used to enable a motor using an enabling switch (S)
and a disabling switch (R).
Q represents the state of the motor (1 if the motor is moving).

Programmable Logic Controllers – Examples (II) 46

S R Q
|---| |---+---|/|-------()----|
| Q |
|---| |---+

Prof. Luca BascettaProf. Luca Bascetta

A discrete time control law periodically computes the control variable given
a measure of the controlled variable and the reference signal. This
computation is executed every sampling interval.
To replicate the same behavior on a computer system we need an
operating system that always takes the same amount of time to complete
the control task. We will call such a system a real-time system.

How can we define a real-time system?
• a system in which the time at which output is produced is significant, as

the input usually corresponds to some event in the physical world, and
the output has to relate to that same event;

• a system that must process information and produce a response within a
specified time, else risk severe consequences, including failure;

• a system whose correctness is based on both the correctness of the
outputs and their timeliness;

• a system which has to respond to externally generated input stimuli
within a finite and specified period.

Real-time systems (I) 47

Prof. Luca BascettaProf. Luca Bascetta

Real-time does not mean fast!
A real-time system does not have to be fast: the deadline may be days or
weeks… it means that it must produce the response by the required time.

To measure the timeliness of a real-time system we introduce the notion of
jitter.
We define jitter the amount of error in the timing of a task over subsequent
iterations of a program or loop.
A good real-time system provides a low amount of jitter when programmed
correctly.

We can classify real-time systems into two groups:
• soft real-time systems, are systems that still function even if deadlines

are sometimes not met (failure to meet response time constraints leads
only to a decrease of performance)

• hard real-time systems, are systems where a failure to meet response
time constraints leads to a catastrophic system failure

Real-time systems (II) 48

Prof. Luca BascettaProf. Luca Bascetta

From a hardware point of view, a real-time system should have:
• one or more processors with suitable computational power
• known and predictable instruction execution time (at least for the worst

case)
• low and deterministic memory and I/O latency
• automatic fault detection capabilities
• hardware redundancy

From a software point of view, a real-time operating system should have:
• a task scheduler allowing different process priorities
• a multitasking pre-emptive scheduler (a task can be temporarily

interrupted and later resumed) allowing context switches
• techniques to avoid deadlock conditions
• mechanisms to support inter-process communication and process

synchronization
• mechanisms to handle interrupts

Real-time systems (III) 49

Prof. Luca BascettaProf. Luca Bascetta

Writing software for a real-time system is far more complex than writing
standard software.
Rigorous techniques and tools are required, for the design and for the
testing phase as well.
To simplify the development of real-time applications, supporting inter-
process communication, synchronization, data exchange and distributed
computing, middleware exists (e.g., the OROCOS framework).

Finally, we mention some real-time operating systems:
• commercial

• QNX
• VxWorks
• WindowsCE

• open source
• RTAI
• Xenomai
• RTLinux

Real-time systems (IV) 50

	Diapositiva numero 1
	Motivations (I)
	Motivations (II)
	Communication systems (I)
	Communication systems (II)
	Communication systems (III)
	Communication systems (IV)
	Communication systems (V)
	Communication systems (VI)
	Communication systems – Example
	Communication systems (VII)
	Communication systems (VIII)
	Communication systems (IX)
	Communication systems (X)
	Communication systems (XI)
	Communication systems (XII)
	Communication systems (XIII)
	Communication systems (XIV)
	Communication systems (XV)
	Communication systems (XVI)
	Communication systems – Example (I)
	Communication systems – Example (II)
	Communication systems – Example (III)
	Fieldbus (I)
	Fieldbus (II)
	Fieldbus (III)
	Fieldbus (IV)
	Fieldbus (V)
	Fieldbus (VI)
	Fieldbus (VII)
	Fieldbus (VIII)
	Fieldbus (IX)
	Programmable Logic Controllers (I)
	Programmable Logic Controllers (II)
	Programmable Logic Controllers (III)
	Programmable Logic Controllers (IV)
	Programmable Logic Controllers (V)
	Programmable Logic Controllers (VI)
	Programmable Logic Controllers (VII)
	Programmable Logic Controllers (VIII)
	Programmable Logic Controllers (IX)
	Programmable Logic Controllers – Examples
	Programmable Logic Controllers (X)
	Programmable Logic Controllers (XI)
	Programmable Logic Controllers – Examples (I)
	Programmable Logic Controllers – Examples (II)
	Real-time systems (I)
	Real-time systems (II)
	Real-time systems (III)
	Real-time systems (IV)

