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We will start introducing the fundamentals of systems theory.
This basic knowledge will represent the ground on which we will develop 
basic and advanced control theory.
The main topics we will face are:
• fundamentals of dynamical systems
• solutions and equilibrium points
• Lyapunov stability
• Linear and Time Invariant systems
• solutions and equilibrium points for LTI systems
• stability of LTI systems
• stability analysis of LTI systems
• stability of equilibria of nonlinear systems
• transfer function of a LTI system
• observability and controllability
• realization and canonical forms

Motivations 2
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What is a control problem?
We have a control problem all the times
we would like to make a machine
behaving in a desired way.
The controller is the device that exerts
the appropriate actions on the machine,
in order to achieve the desired behavior.
The control law is the algorithm the
controller uses to determine the action
to be performed.

Let’s try to formalize…
The controller determines, at every time
instant, the value of the control 𝑢𝑢 in such a
way that the controlled variable 𝑦𝑦 is as similar as possible to its reference
𝑦𝑦𝑜𝑜, for every “reasonable” behavior of the reference and the disturbance 𝑑𝑑.

The control problem (I) 3
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How can a control system be 
designed?

Open-loop control (feedforward)
No measured variable is used to 
compute the control variable, or 
measured variables that do not depend 
on 𝑢𝑢 are used.

Closed-loop control (feedback)
Measurements are used to compute 
the control variable, whose values 
depend on the control variable itself.

The control problem (II) 4
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We will start studying how a controlled system can be represented and 
analyzed.

We will make reference to the tools offered by systems theory, that allow to 
study the properties of physical systems irrespective of their physical 
domain (mechanical, electrical, hydraulic, etc.).

We will focus on a dynamical description of the physical system as we are 
interested to describe its time evolution.

The control problem (III) 5
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A dynamical system is a mathematical tool to represent a physical system 
by way of a model

Input (𝑢𝑢) and output (𝑦𝑦) variables are the interfaces allowing the system to 
interact with the environment in which it operates.
Input variables 𝑢𝑢 allow the environment to act on the system, affecting its 
behavior.
Output variables 𝑦𝑦 are measurements we can use to monitor the behavior of 
the system.
The relationship between input and output variables established by the 
dynamical system is a “cause and effect” relationship, it is not a relationship 
involving flow of mass or energy.

Dynamical systems (I) 6
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Let’s consider a very simple electrical system.

Input 𝑢𝑢: the current flowing in the capacitor
Output 𝑦𝑦: the voltage across the capacitor

The input-output relation describing the dynamical system is

Solving the differential equation we obtain the expression of the output

Conclusions:
• even in a very simple system the input-output relation is differential (not 

just an algebraic relation)
• to compute the output at time 𝑡𝑡 we need the initial value of the output and 

the values of the input for 𝑡𝑡 ≥ 𝑡𝑡0

Dynamical systems (II) 7
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We call order 𝑛𝑛 of the dynamical system the minimum number of initial 
conditions we need, in order to compute the system output given the input 
values from the initial time.
We call state of the dynamical system the smallest set of linearly 
independent variables (𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛) such that the values of the members of 
this set at time 𝑡𝑡0, along with a known input function, completely determine 
the values of the state itself (and of the output) for all 𝑡𝑡 ≥ 𝑡𝑡0.

Let’s consider again the generic dynamical system.
From now on the input, output and state variables
will be vectors of dimension 𝑚𝑚, 𝑝𝑝, and 𝑛𝑛, respectively.
They will be represented, in vector notation, as follows

Dynamical systems (III) 8
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Let’s consider again the input-output relation of the electrical system, we 
choose the differential one

We can generalize this relation, giving rise to the general vector equation of 
a dynamical system

where 𝐱𝐱 ∈ ℝ𝑛𝑛, 𝐮𝐮 ∈ ℝ𝑚𝑚, 𝐲𝐲 ∈ ℝ𝑝𝑝, and

Dynamical systems (IV) 9

State equations

Output equations
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We will now introduce some examples of dynamical systems related to 
different physical domains (mechanical, electrical, hydraulic).

Dynamical systems (V) 10
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Dynamical systems – Examples (I) 11

Capacitor

Input 𝑢𝑢 = 𝑣𝑣
Output 𝑦𝑦 = 𝑖𝑖
State 𝑥𝑥1 = 𝑖𝑖

Input 𝑢𝑢 = 𝑖𝑖
Output 𝑦𝑦 = 𝑣𝑣
State 𝑥𝑥1 = 𝑣𝑣

Inductor
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Dynamical systems – Examples (II) 12

Input 𝑢𝑢 = 𝑞𝑞𝑖𝑖
Output 𝑦𝑦 = ℎ
State 𝑥𝑥1 = ℎ

Input 𝑢𝑢 = 𝑞𝑞𝑖𝑖
Output 𝑦𝑦 = ℎ
State 𝑥𝑥1 = ℎ

Tank

Tank with valve
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Dynamical systems – Examples (III) 13

Mass-spring-damper

Simple pendulum

Input 𝑢𝑢 = 𝐹𝐹
Output 𝑦𝑦 = 𝑝𝑝
State 𝑥𝑥1 = 𝑝𝑝

𝑥𝑥2 = 𝑣𝑣

Input 𝑢𝑢 = 𝜏𝜏
Output 𝑦𝑦 = 𝜃𝜃
State 𝑥𝑥1 = 𝜃𝜃

𝑥𝑥2 = 𝜔𝜔
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There are many possible ways to classify dynamical systems, let’s see the 
most important ones.

SISO (Single Input Single Output) – if 𝑚𝑚 = 𝑝𝑝 = 1
MIMO (Multi Input Multi Output) – if 𝑚𝑚 > 1 or 𝑝𝑝 > 1

Strictly proper – if function 𝑔𝑔 does not depend on the input (i.e., 𝑔𝑔(𝐱𝐱 𝑡𝑡 , 𝑡𝑡))
Proper – if function 𝑔𝑔 depends on the input 

Linear – if all the functions 𝑓𝑓𝑖𝑖 and 𝑔𝑔𝑖𝑖 are linear with respect to state and 
input variables
Non linear – if there is at least one function 𝑓𝑓𝑖𝑖 or 𝑔𝑔𝑖𝑖 that is not linear with 
respect to at least a state or an input variable

Time invariant – if functions 𝑓𝑓 and 𝑔𝑔 do not depend on time 𝑡𝑡 (i.e., 
𝑓𝑓(𝐱𝐱 𝑡𝑡 ,𝐮𝐮 𝑡𝑡 ) and 𝑔𝑔(𝐱𝐱 𝑡𝑡 ,𝐮𝐮(𝑡𝑡)))
Time varying – if there is at least one function 𝑓𝑓𝑖𝑖 or 𝑔𝑔𝑖𝑖 that depends on time 
𝑡𝑡

Dynamical systems (VI) 14
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Given a dynamical system

an initial condition at time 𝑡𝑡0

and an input function for all 𝑡𝑡 ≥ 𝑡𝑡0

we call
• state trajectory

• output trajectory

Solutions and equilibrium points (I) 15
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A constant trajectory, generated by a constant input function, is called 
equilibrium.

Given a time-invariant dynamical system

and a constant input function for all 𝑡𝑡 ≥ 𝑡𝑡0

we call
• state equilibrium

• output equilibrium

The equilibria are solutions of the following equations

Solutions and equilibrium points (II) 16
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Solutions and equilibrium points – Examples 17

Mass-spring-damper

Simple pendulum
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Stability theory studies how trajectories of a dynamical system change 
under small perturbations of initial conditions.

We will make reference to Lyapunov stability theory and concentrate our 
analysis on time invariant systems.

Given a general time invariant system

an input function

and two initial conditions
• 𝐱𝐱0𝑛𝑛 the nominal initial condition
• 𝐱𝐱0𝑝𝑝 the perturbed initial condition
two trajectories are generated
• 𝐱𝐱𝑛𝑛(𝑡𝑡), nominal trajectory, generated by 𝐱𝐱0𝑛𝑛 and �𝐮𝐮(𝑡𝑡)
• 𝐱𝐱𝑝𝑝(𝑡𝑡), perturbed trajectory, generated by 𝐱𝐱0𝑝𝑝 and �𝐮𝐮(𝑡𝑡)

Lyapunov stability (I) 18
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𝐱𝐱𝑛𝑛 𝑡𝑡 is stable if

Lyapunov stability (II) 19

The trajectory generated by 
perturbing the initial condition 
(perturbed trajectory) remains 
closed to the nominal one.
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𝐱𝐱𝑛𝑛 𝑡𝑡 is unstable if it is not stable

Lyapunov stability (III) 20

The trajectory generated by 
perturbing the initial condition 
(perturbed trajectory) get away 
from the nominal one.
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𝐱𝐱𝑛𝑛 𝑡𝑡 is asymptotically stable if it is stable and

Lyapunov stability (IV) 21

The trajectory generated by 
perturbing the initial condition 
(perturbed trajectory) remains 
closed to the nominal one and 
asymptotically tends to it.
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The previous definitions (stable, unstable, asymptotically stable) hold for 
equilibria as well, as they are constant trajectories.

Lyapunov stability (V) 22
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In LTI systems all states and output equations are linear with respect to all 
state and input variables.
Functions 𝐟𝐟 and 𝐠𝐠 can be thus represented as linear combinations

and expressed in vector form as

where 𝐱𝐱 ∈ ℝ𝑛𝑛, 𝐮𝐮 ∈ ℝ𝑚𝑚, 𝐲𝐲 ∈ ℝ𝑝𝑝, and

Linear Time Invariant systems (I) 23
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Linear Time Invariant systems (II) 24
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Linear Time Invariant systems – Example 25

Mass-spring-damper
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A state variable representation of a LTI system is not unique, there are 
infinitely many representations that are equivalent from the input-output 
point of view.
Consider the state space representation

we introduce the following change of variables

and, thanks to the non singularity of matrix 𝑇𝑇

Differentiating the equation that defines the change of variables we obtain

and substituting the change of variables into the output equation

Linear Time Invariant systems (III) 26
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Summarizing, the equations of the system in the new variables are

where

All the properties of a LTI system that are invariant with respect to a change 
of variables are called structural properties.

Linear Time Invariant systems (IV) 27
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Given a LTI system

and a constant input function for all 𝑡𝑡 > 0

state equilibria are solutions of the following equation

If matrix 𝐀𝐀 is non singular, there exists a unique state equilibrium given by

and the output equilibrium is

Solutions and equilibrium points (I) 28

Static gain
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Given a LTI system

an initial condition

and an input function for all 𝑡𝑡 ≥ 0

the state and output trajectories are given by

Solutions and equilibrium points (II) 29

Zero-input response
Generated by the initial
condition only

Zero-state response
Generated by the input only
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How can we compute the matrix exponential that appears in the system 
trajectories?
Given a matrix 𝐀𝐀 and a scalar 𝑡𝑡 the matrix exponential is defined as

From the definition we can compute the derivative of the matrix exponential

Another interesting property of the matrix exponential…

Solutions and equilibrium points (III) 30
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Assume that 𝐀𝐀 is a diagonalizable matrix

Then

Solutions and equilibrium points (IV) 31
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Given a LTI system

an input function

and two initial conditions
• 𝐱𝐱0𝑛𝑛 the nominal initial condition
• 𝐱𝐱0𝑝𝑝 the perturbed initial condition
two trajectories are generated
• the nominal trajectory 𝐱𝐱𝑛𝑛(𝑡𝑡), generated by 𝐱𝐱0𝑛𝑛 and �𝐮𝐮(𝑡𝑡)
• the perturbed trajectory 𝐱𝐱𝑝𝑝(𝑡𝑡), generated by 𝐱𝐱0𝑝𝑝 and �𝐮𝐮(𝑡𝑡)

Recall that 𝐱𝐱𝑛𝑛 𝑡𝑡 is stable if

Stability of LTI systems (I) 32
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Defining

The stability definition becomes

To asses the stability we have two compute the difference between the 
nominal and perturbed trajectories.
As both trajectories are solutions of the state differential equations we have

and doing the difference, side by side, between the two equations

Stability of LTI systems (II) 33
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The stability of the nominal trajectory depends on the zero-input solution of 
the following autonomous LTI system

Let’s draw the first conclusions, in a LTI system:
• stability analysis depends on the zero-input solution of an autonomous 

system
• stability does not depend on the input function 𝐮𝐮(𝑡𝑡)
• stability depends only on the state matrix 𝐀𝐀
• the result of stability analysis is independent of the chosen nominal 

trajectory 
• the trajectories are all stable, all unstable or all asymptotically stable
• stability is a property of the system

Stability of LTI systems (III) 34
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The solution (zero-input trajectory) of the autonomous LTI system

is

The stability of the LTI system depends on these trajectories, and, 
interpreting the Lyapunov stability definition, we can say that the system is
• stable if all the zero-input trajectories are bounded
• asymptotically stable if all the zero-input trajectories are bounded and 

tend asymptotically to zero
• unstable if at least one of the zero-input trajectories is not bounded

Assuming that the state matrix 𝐀𝐀 is diagonalizable, we can introduce a 
change of variables that decouples the trajectories and simplifies the 
computation of the matrix exponential

Stability of LTI systems (IV) 35
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The trajectories are given by

We conclude that the zero-input trajectories are linear combinations of the 
terms

that we call characteristic modes or natural modes of the LTI system.

Let’s analyze these terms, assuming that 𝜆𝜆𝑖𝑖 ∈ ℂ (𝜆𝜆𝑖𝑖 = 𝛼𝛼𝑖𝑖 + j𝛽𝛽𝑖𝑖)

making the linear combination, the imaginary part is cancelled out by the 
imaginary part of the complex conjugate of 𝜆𝜆𝑖𝑖. 
As a consequence we have
• e𝜆𝜆𝑖𝑖𝑡𝑡 when 𝜆𝜆𝑖𝑖 ∈ ℝ
• e𝛼𝛼𝑖𝑖𝑡𝑡 cos(𝛽𝛽𝑖𝑖𝑡𝑡 + 𝜑𝜑𝑖𝑖) when 𝜆𝜆𝑖𝑖 ∈ ℂ

Stability of LTI systems (V) 36
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The analysis of the two modes e𝜆𝜆𝑖𝑖𝑡𝑡 and e𝛼𝛼𝑖𝑖𝑡𝑡 cos(𝛽𝛽𝑖𝑖𝑡𝑡) reveals that:
• if all the eigenvalues of matrix 𝐀𝐀 lie in the open left half plane (𝛼𝛼𝑖𝑖 < 0), all 

the modes are bounded and tend to zero asymptotically; modes tend 
monotonically to zero if 𝛽𝛽𝑖𝑖 = 0, otherwise they exhibit damped 
oscillations

• if all the eigenvalues of matrix 𝐀𝐀 lie in the closed left half plane (𝛼𝛼𝑖𝑖 ≤ 0), 
and there is at least one eigenvalue on the imaginary axis (𝛼𝛼𝑖𝑖 = 0), all 
the modes are bounded but the modes associated to the eigenvalues on 
the imaginary axis do not tend to zero asymptotically; they are 
asymptotically constant if 𝛽𝛽𝑖𝑖 = 0, otherwise they exhibit undamped 
oscillations

• if at least one eigenvalue of matrix 𝐀𝐀 lies in the open right half plane 
(𝛼𝛼𝑖𝑖 > 0), there is at least one mode that is not bounded

Stability of LTI systems (VI) 37
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Based on the previous analysis we can conclude that an LTI system with 
diagonalizable state matrix is:
• asymptotically stable, if and only if all the eigenvalues of matrix 𝐀𝐀 lie in 

the open left half plane (Re 𝜆𝜆𝑖𝑖 < 0 ∀𝑖𝑖)
• stable, if and only if all the eigenvalues of matrix 𝐀𝐀 lie in the closed left 

half plane (Re 𝜆𝜆𝑖𝑖 ≤ 0 ∀𝑖𝑖) and there is at least one eigenvalue on the 
imaginary axis (∃𝑖𝑖: Re 𝜆𝜆𝑖𝑖 = 0)

• unstable, if and only if there is at least one eigenvalue of matrix 𝐀𝐀 lying in 
the open right half plane (∃𝑖𝑖: Re 𝜆𝜆𝑖𝑖 > 0)

This analysis can be extended to non diagonalizable matrices adopting the 
Jordan canonical form.
In the general case of non diagonalizable state matrices it can be shown 
that, if all the eigenvalues of matrix 𝐀𝐀 lie in the closed left half plane, and 
there are multiple eigenvalues on the imaginary axis, the system is unstable 
if there is at least one eigenvalue on the imaginary axis whose geometric 
multiplicity is less than the algebraic multiplicity.

Stability of LTI systems (VII) 38
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We conclude showing that stability is a structural property of a LTI system.

Given a change of variables 𝐓𝐓

as similar matrices share eigenvalues and geometric multiplicities of 
eigenvalues, stability is invariant with respect to a change of state variables, 
and it is thus a structural property of the system.

Stability of LTI systems (VIII) 39
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Geometric vs. algebraic multiplicity of an eigenvalue, how are they defined? 
How to compute them?

Algebraic multiplicity, is the multiplicity of the eigenvalue in the characteristic 
equation.
Geometric multiplicity, is the number of linearly independent eigenvectors 
associated to the eigenvalue.

Example

Eigenvalues 𝜆𝜆1,2 = 0

Let’s compute the eigenvectors associated to the eigenvalue 𝜆𝜆 = 0

We conclude that the eigenvalue 𝜆𝜆 = 0 has
• algebraic multiplicity 2
• geometric multiplicity 1

Stability of LTI systems (IX) 40
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The stability of a LTI system is related to the eigenvalues of its state matrix, 
but computing the eigenvalues is, in general, not so simple (think to big 
matrices!).
We would like to investigate the existence of tools to perform the stability 
analysis without computing the eigenvalues.

Let’s start observing that:
• if matrix 𝐀𝐀 is triangular, the eigenvalues are the diagonal entries

• tr 𝐀𝐀 ≥ 0 implies that the system cannot be asymptotically stable 
(remember that tr 𝐀𝐀 = ∑𝑖𝑖=1𝑛𝑛 𝜆𝜆𝑖𝑖 = ∑𝑖𝑖=1𝑛𝑛 Re(𝜆𝜆𝑖𝑖))

• tr 𝐀𝐀 > 0 implies that the system is unstable

• det 𝐀𝐀 = 0 implies that the system cannot be asymptotically stable 
(remember that det 𝐀𝐀 = ∏𝑖𝑖=1

𝑛𝑛 𝜆𝜆𝑖𝑖)

Stability analysis of LTI systems (I) 41
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Consider now the characteristic polynomial of matrix 𝐀𝐀

We introduce a necessary, and a necessary and sufficient condition to 
conclude on the asymptotic stability of a LTI system analyzing the 
coefficients of the characteristic polynomial.

Necessary condition. If the system is asymptotically stable, then all the 
coefficients of the characteristic polynomial are nonzero and have the same 
sign.

Example

Stability analysis of LTI systems (II) 42

not asymptotically 
stable

not asymptotically 
stable

nothing can be 
concluded
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Consider again the characteristic polynomial of matrix 𝐀𝐀

We construct a table (Routh table) with the following rules:
• first row starts with 𝜑𝜑0
• second row starts with 𝜑𝜑1
• other coefficients alternate between rows
• both rows should be same length

 continue until no coefficients are left
 add zero as last coefficient if necessary

• entries in a generic row are computed
following the rule

Stability analysis of LTI systems (III) 43

ro
w

s
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Necessary and sufficient condition. The system is asymptotically stable if 
and only if all entries of the first column are nonzero and have the same 
sign.

Example

Stability analysis of LTI systems (IV) 44

All entries of the first column are nonzero 
and have the same sign.
The system is asymptotically stable
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Why is the Routh-Hurwitz stability criterion so important if I can compute the 
eigenvalues with Matlab?

Example

Stability analysis of LTI systems (V) 45
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Why is the Routh-Hurwitz stability criterion so important if I can compute the 
eigenvalues with Matlab?

Example

Stability analysis of LTI systems (V) 46

The system is asymptotically stable for
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Given a nonlinear time invariant system

and a constant input function for all 𝑡𝑡 ≥ 𝑡𝑡0

assume that there exists a state equilibrium �𝐱𝐱.

How can we asses the stability of this equilibrium point?

We will exploit the stability tools for LTI systems, approximating the 
nonlinear system with a local linear approximation.
Let’s first introduce the notion of linearized system…

Stability of equilibria of nonlinear systems (I) 47
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Given a nonlinear time invariant system

and an equilibrium

We can locally approximate the nonlinear system, around the equilibrium, 
with the linearized system

where

and

Stability of equilibria of nonlinear systems (II) 48
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As the linearized system is a LTI system, we can assess the stability of the 
equilibrium point of the nonlinear system analyzing the state matrix

We can state the following results:
• if all the eigenvalues of matrix 𝐀𝐀 lie in the open left half plane (Re(𝜆𝜆𝑖𝑖)<0), 

the equilibrium point is asymptotically stable
• if at least one eigenvalue of matrix 𝐀𝐀 lies in the open right half plane 

(∃𝑖𝑖: Re(𝜆𝜆𝑖𝑖)>0), the equilibrium point is unstable

If the eigenvalues of matrix 𝐀𝐀 lie in the closed left half plane and there is at 
least one eigenvalue on the imaginary axis the linearization, that is a first 
order approximation, is too rough to assess the stability of the equilibrium 
point.

Stability of equilibria of nonlinear systems (III) 49
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Given a LTI system

using the Laplace transform we can introduce a representation of the 
system in the frequency domain.

𝑢𝑢(𝑡𝑡) 𝑈𝑈(𝑠𝑠)

𝑦𝑦(𝑡𝑡) 𝑌𝑌(𝑠𝑠)

Assuming zero initial conditions, the relation in the frequency domain is 
called transfer function and it is given by

Transfer function of a LTI system (I) 50

Laplace transform

Inverse Laplace transform

Differential
equations

Algebraic
equations
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We can easily show that the transfer function is invariant with respect to 
change of variables, i.e. it is a structural property of the LTI system.

Let’s introduce the following change of variables

The system in the new set of state variables has the following description

Computing now the transfer function

Transfer function of a LTI system (II) 51
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How can we compute the transfer function of a LTI system from the state 
space representation?

Let’s start from the LTI system in state space form

transforming each equation we obtain

Transfer function of a LTI system (III) 52
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Solving now this linear system we get the transfer function
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We will now analyze the structure of the transfer function.

The transfer function is a ratio of polynomials in the 𝑠𝑠 variable

We will call
• poles, the roots of the denominator
• zeros, the roots of the numerator

The stability of the system can be assessed analyzing the poles!

Caveat: these conclusions hold only if there are no pole-zero cancellations.

Transfer function of a LTI system (V) 54

Numerator
• proper system, polynomial of order 𝑛𝑛
• strictly proper system, polynomial of order < 𝑛𝑛

Denominator
• polynomial of order 𝑛𝑛
• is the characteristic polynomial of matrix 𝐀𝐀



Prof. Luca BascettaProf. Luca Bascetta

Let’s introduce two standard ways to represent a transfer function.

First, the zero-pole form

where
• 𝜌𝜌 ∈ ℝ is the gain
• −𝑧𝑧𝑖𝑖 ∈ ℂ are the zeros
• −𝑝𝑝𝑗𝑗 ∈ ℂ are the poles
In order to have polynomials with real coefficients we can modify the 
representation as follows
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where
• 𝜔𝜔𝑛𝑛𝑧𝑧𝑖𝑖, 𝜔𝜔𝑛𝑛𝑝𝑝𝑗𝑗 are positive real numbers called natural frequencies

• 𝜉𝜉𝑧𝑧𝑖𝑖, 𝜉𝜉𝑝𝑝𝑗𝑗 are real numbers, with 𝜉𝜉∗ < 1, called damping factors

They can be interpreted as follows
• Re −𝑝𝑝𝑖𝑖 = −𝜉𝜉𝑝𝑝𝑖𝑖𝜔𝜔𝑛𝑛𝑝𝑝𝑖𝑖

• Im −𝑝𝑝𝑖𝑖 = 𝜔𝜔𝑛𝑛𝑝𝑝𝑖𝑖 1 − 𝜉𝜉𝑝𝑝2𝑖𝑖
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A second form is the gain-time constant form

where
• 𝜇𝜇 ∈ ℝ is the gain
• 𝑔𝑔 ∈ ℤ is the type (number of poles/zeros in 𝑠𝑠 = 0)
• 𝜏𝜏𝑖𝑖 ∈ ℂ are the zero time constants
• 𝑇𝑇𝑗𝑗 ∈ ℂ are the pole time constants
In order to have polynomials with real coefficients we can modify the 
representation as follows
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If 𝑔𝑔 = 0 (no poles/zeros in 𝑠𝑠 = 0) then

and the gain of the transfer function is equal to the system static gain.
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Step response of first order systems
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Step response of second order systems
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Up to now we haven’t considered pole-zero cancellations that can occur 
during the computation of the transfer function from the state space 
matrices.

Let’s see two examples.

In both examples the order of the denominator is less than the order of the 
state space representation: there are eigenvalues of matrix 𝐀𝐀 that are not  
poles of the transfer function.

The poles that have been canceled out form the hidden dynamics.

Observability and controllability (I) 61



Prof. Luca BascettaProf. Luca Bascetta

We can formalize the fact that there are parts of the system that do not 
appear in the input-output relation introducing the notions of observability 
and controllability.

A LTI system is completely controllable if we can find an input function that, 
in finite time, can move the state of the system from the origin of the state 
space to any point in ℝ𝑛𝑛.

A LTI system is completely observable if for any initial condition in ℝ𝑛𝑛 the 
zero-input response of the system output, on any finite time interval, is 
different from a zero output.

If a LTI system is not completely controllable and not completely 
observable, it means that the system has a part that is observable but not 
controllable, another that is controllable but not observable, etc.

We can always find a change of variables that puts the system in a 
canonical form (Kalman canonical form) that separates and shows the 
different parts.
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Here is the results of the Kalman canonical decomposition

The only block that appears in the path from input 𝑢𝑢 to output 𝑦𝑦 is the 
completely controllable and observable part.
The transfer function is thus the image of only the completely controllable 
and observable part of the system.
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How can we assess the observability/controllability of a LTI system?

We introduce the controllability matrix 𝐊𝐊𝑐𝑐 (𝐊𝐊𝑐𝑐 ∈ ℝ𝑛𝑛×𝑛𝑛𝑛𝑛)

and the observability matrix 𝐊𝐊𝑜𝑜 (𝐊𝐊𝑜𝑜 ∈ ℝ𝑛𝑛×𝑛𝑛𝑛𝑛)

A LTI system is completely controllable if and only if rank 𝐊𝐊𝑐𝑐 = 𝑛𝑛.
A LTI system is completely observable if and only if rank 𝐊𝐊𝑜𝑜 = 𝑛𝑛.

If the system is single input (single output) the controllability (observability) 
condition is equivalent to verify that 𝐊𝐊𝑐𝑐 (𝐊𝐊𝑜𝑜) is a non-singular matrix.
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Example 1

The system is composed of two parts: one is completely observable and 
controllable, another one is completely observable but it is not completely 
controllable.
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Example 2

The system is composed of two parts: one is completely observable and 
controllable, another one is completely controllable but it is not completely 
observable.
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We can easily show that observability and controllability are invariant with 
respect to change of variables, i.e. they are structural properties of the LTI 
system.

Let’s introduce the following change of variables

The system in the new set of state variables has the following description

Computing now the observability matrix
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and the controllability matrix

Summarizing

As matrix 𝐓𝐓 is non-singular, we conclude that �𝐊𝐊𝑜𝑜 and 𝐊𝐊𝑜𝑜 (�𝐊𝐊𝑐𝑐 and 𝐊𝐊𝑐𝑐) share 
the same rank.
Consequently the system in the new state variables is completely 
observable (controllable) if and only if the original system is completely 
observable (controllable).
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Realization refers to the computation of a state space model implementing a 
given input-output behavior.

We observe that:
• the realization of an input-output relation has not a unique solution

• the solutions characterized by an order of the state space model equal to 
the order of the denominator of the transfer function are called minimal 
realizations

• minimal realizations of an input-output behavior are LTI systems 
completely controllable and completely observable

We now introduce two canonical realizations.
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Given the transfer function of a SISO strictly proper LTI system

The controllable canonical form is given by the following matrices

The resulting model is guaranteed to be completely controllable.

Realization and canonical forms (II) 70



Prof. Luca BascettaProf. Luca Bascetta

Given the transfer function of a SISO strictly proper LTI system

The observable canonical form is given by the following matrices

The resulting model is guaranteed to be completely observable.
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Given a SISO strictly proper LTI system, described by matrices (𝐀𝐀,𝐁𝐁,𝐂𝐂), we 
have

The system described by matrices

has the same transfer function

of the original system, and is called dual system.

The original system and the dual one are two realizations of the same input-
output relation.

Caveat: The observable canonical form is the dual system of the 
controllable canonical form!
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Given a completely controllable LTI system, how can we compute the 
change of variables that transforms its state space description into the 
controllable canonical form?

Given (𝐀𝐀,𝐁𝐁), completely controllable, follow the steps:
1. compute the characteristic polynomial of matrix 𝐀𝐀

2. using coefficients 𝑎𝑎𝑖𝑖, compute (�𝐀𝐀, �𝐁𝐁)
3. compute the controllability matrices 𝐊𝐊𝑐𝑐 and �𝐊𝐊𝑐𝑐

4. compute
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Given

compute the change of variables that puts the system in controllable 
canonical form.

1. compute the characteristic polynomial of matrix 𝐀𝐀

2. compute (�𝐀𝐀, �𝐁𝐁)
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3. compute the controllability matrices 𝐊𝐊𝑐𝑐 and �𝐊𝐊𝑐𝑐

4. compute the change of variables

Realization and canonical forms – Example (II) 75
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