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Motivations

A servomechanism (or servo) is composed of
• a motor
• a transmission chain
• a load
• one or more position sensors
• a control board, including a power stage

We will now introduce the characteristics of a motion control problem, i.e., 
how to control the position of the load regulating motor torque.

We will consider different scenarios, in terms of:
• number of available position sensors
• location of each position sensor (motor side or load side)
• mechanical characteristics of the transmission chain (rigid or elastic)
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Modelling a rigid servomechanism (I)

We start introducing the model of a servomechanism with rigid transmission 
chain.

First, consider the model of a DC motor.

The voltage applied to armature windings generates a current that depends 
on the motor characteristics (RL equivalent circuit) and the back-EMF 
voltage.
It can be shown that the motor generates a torque proportional to the 
armature current.

In classical DC motors, current commutation is operated by the commutator 
and by brushes.
In robots and machine tools, brushless motors are usually adopted.
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Modelling a rigid servomechanism (II)

A DC motor is described by the following equations

or, equivalently, by the following block diagram
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Modelling a rigid servomechanism (III)

If we assume that the transmission chain is rigid, the subsystem composed 
by the motor, the transmission chain and the load is described by the 
following equations

that can be merged obtaining

where
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Modelling a rigid servomechanism (IV)

The model is represented by the following block diagram

where

If friction 𝐷𝐷𝑚𝑚 is negligible, the model simplifies as
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Modelling a rigid servomechanism (V)

Combining the two models, we obtain the following block diagram
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Control system architecture (I)

Taking into account the structure of the model, we can simplify the design of 
the control system using a cascaded control architecture.
We can identify three intermediate variables:
• motor current
• motor velocity
• motor position
that give rise to three loops.
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Control system architecture (II)

The cascaded control architecture is composed of:
• a PI current controller
• a PI velocity controller
• a P position controller

As in any cascaded control architecture the tuning of the control system is 
performed starting from the inner loop.

We will now consider the design of each loop, under the assumption of rigid 
transmission.
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Current control

The design of the current controller is based only on the electrical dynamics.

Considering that these dynamics are usually very fast, an high bandwidth 
loop can be designed (thousand of ⁄𝑟𝑟𝑟𝑟𝑟𝑟 𝑠𝑠).

Back-EMF acts on the loop as a slow load disturbance, as it depends on the 
mechanical dynamics, and is thus rejected by the closed-loop system.

Thanks to the frequency separation between the electrical and mechanical 
dynamics, the velocity regulator assumes that there is an algebraic relation 
between the desired and actual current
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Velocity control (I)

Velocity control is accomplished
using a PI controller

The loop transfer function is given by

If a large value for 𝑇𝑇𝐼𝐼𝐼𝐼 is selected, so that
a low frequency zero is generated, the
loop transfer function is approximated,
around the crossover frequency, by its
high-frequency approximation
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Velocity control (II)

Summarizing, we will select the PI parameters following the rules
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Position control

The velocity loop is seen by the
position loop as a first order
low-pass filter.
The plant transfer function used to
tune the position controller is thus

and the loop transfer function

Selecting 𝐾𝐾𝑃𝑃𝑝𝑝 ≪ 𝜔𝜔𝑐𝑐𝑣𝑣 we have

13

𝜔𝜔𝑐𝑐𝑝𝑝 𝜔𝜔c𝑣𝑣



Prof. Luca BascettaProf. Luca Bascetta

Velocity feedforward (I)

In order to increase the performance of the system, we can introduce a 
velocity feedforward action.

Sometimes a weighted feedforward action is used (𝑘𝑘𝑓𝑓𝑓𝑓 ∈ 0,1 )
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Velocity feedforward (II)

If a unitary feedforward is considered, and the velocity measurement is 
substituted by the derivative of the position measurement, it can be easily 
shown that the P/PI scheme is equivalent to a PID regulator.
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Velocity feedforward (III)

We can easily show the
equivalence.
Let’s compute the transfer
function of the control system

and
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Limitations of the rigid servo model

The design based on the rigid model of the servomechanism does not 
reveal any limitation to the crossover frequency, i.e., it seems that the 
bandwidth of the system can be arbitrarily increased.

In a real system, however, as the bandwidth increases undesired vibrations, 
noise and torque saturation appear.

We conclude that the rigid model is too simple and it is not able to represent 
all the control relevant dynamics.

We will now study a more complex model of the servomechanism that is 
able to correctly interpret what happens to a real system when the 
bandwidth increases.
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Two-mass model of a servomechanism (I)

To overcome the limitations of the rigid model,
let’s assume that the motor is connected to the
load through an elastic transmission.
The model than becomes

and the corresponding block diagram is
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Two-mass model of a servomechanism (II)

Let’s consider the response of the system to a variation of motor torque, 
neglecting load torque.
We can consider either the transfer function from motor torque to motor 
position or to load position.

The system can be thus interpreted as a SITO (Single Input Two Outputs) 
dynamical system, whose transfer functions are given by

where 𝐽𝐽𝑙𝑙𝑙𝑙 = ⁄𝐽𝐽𝑙𝑙 𝑛𝑛2 and 𝐽𝐽 = 𝐽𝐽𝑙𝑙𝑙𝑙 + 𝐽𝐽𝑚𝑚.
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Two-mass model of a servomechanism (III)

Assuming 𝐷𝐷𝑚𝑚 = 0 and introducing the following parameters

the two transfer functions become
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Two-mass model of a servomechanism (III)

Assuming 𝐷𝐷𝑚𝑚 = 0 and introducing the following parameters

the two transfer functions become
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Two-mass model of a servomechanism (IV)

Finally, in the case of no load torque, the system is represented by the 
following block diagram

where
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Two-mass model of a servomechanism (V)

The natural frequencies 𝜔𝜔𝑝𝑝 and 𝜔𝜔𝑧𝑧 have a clear physical interpretation.

𝜔𝜔𝑝𝑝, the system natural frequency,
characterizes the zero-input response

𝜔𝜔𝑧𝑧, the locked frequency, characterizes
the oscillations of the load when the
motor is locked

We will now analyze the transfer function 𝐺𝐺𝐼𝐼𝑚𝑚(𝑠𝑠).
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Two-mass model of a servomechanism (VI)

Consider again transfer function 𝐺𝐺𝐼𝐼𝑚𝑚(𝑠𝑠)

Where are poles and zeros located in the complex plane?

We observe that

as a consequence
• poles’ frequency is greater than

zeros’ frequency
• poles’ damping is greater than

zeros’ damping
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Two-mass model of a servomechanism (VII)

Consider again transfer function 𝐺𝐺𝐼𝐼𝑚𝑚(𝑠𝑠)
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Motor side P/PI control architecture

Introducing now the elastic model into the P/PI control scheme, assuming 
that only motor position/velocity measurements are available (as it usually 
happens in robotics) and neglecting load torque, we obtain

or, in case the velocity is computed elaborating the position measurement

26



Prof. Luca BascettaProf. Luca Bascetta

Velocity control (I)

Velocity control is accomplished
using a PI controller

The loop transfer function is given by

Let’s introduce the following a-dimensional parameter

that represents the crossover frequency computed using the rigid model and 
normalized with respect to the anti-resonance frequency.
The smaller �𝜔𝜔𝑐𝑐𝑣𝑣, the more cautious the project is.
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Velocity control (II)

The integral time 𝑇𝑇𝐼𝐼𝑣𝑣 can be selected in such a way that the controller zero is 
located one decade before the anti-resonance frequency

Let’s look at the Bode plots we obtain with two different values of �𝜔𝜔𝑐𝑐𝑣𝑣.
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Velocity control (III)

From the previous result we conclude that both projects give rise to a 
closed-loop system that is robust asymptotically stable.

Let’s try to analyze the Bode plot of the frequency response of the 
complementary sensitivity function with �𝜔𝜔𝑐𝑐𝑣𝑣 = 1.5.
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Velocity control (IV)

The clearest picture on the load oscillations is given by the root locus.
Let’s consider the root locus with respect to �𝜔𝜔𝑐𝑐𝑣𝑣.

There are two complex poles
whose damping is a function
of �𝜔𝜔𝑐𝑐𝑣𝑣.

Maximum damping is achieved
for

We will select as design rule
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Position control (I)

Position control is accomplished
using a P controller.
The loop transfer function is given by

where

Let’s introduce the following a-dimensional parameter

that represents the crossover frequency, computed using the rigid model, 
and normalized with respect to the anti-resonance frequency.
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Position control (II)

Let’s consider again the root locus of the loop transfer function

with respect to �𝜔𝜔𝑐𝑐𝑝𝑝 and for different values of �𝜔𝜔𝑐𝑐𝑣𝑣.

Increasing the bandwidth of the velocity loop, the damping of the closed-
loop poles decreases.
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Position control – Simulation example (I)

Let’s see the results of the P/PI control on a simulation example.
The main characteristics of the servomechanism are  

For the P/PI control
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Position control – Simulation example (II) 34
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Motor side P/PI control performance limitations (I)

Root loci show that increasing the bandwidth of the velocity loop, 
performance of the motion control system referred to the load side 
decreases.
Can we quantify how much performance decreases?
Let’s consider the transfer function from position set-point to load position
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Motor side P/PI control performance limitations (II)

In order to characterize the performance limitations, we can study how the 
height of the resonance peak changes as a function of the velocity loop 
bandwidth.
This relation is given by the 𝐻𝐻∞ norm of the transfer function

and depends on
• servomechanism

characteristics
• a design parameter of the

velocity loop
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Load side P and motor side PI control architecture

In some applications, e.g., in machine tools, a load side (instead of a motor 
side) position control loop is adopted

or, in case the velocity is computed elaborating the position measurement
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Position control (I)

Position control is still accomplished
using a P controller.
The loop transfer function is given by

where

and
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Position control (II)

Let’s consider again the root locus of the loop transfer function

with respect to �𝜔𝜔𝑐𝑐𝑝𝑝 and for different values of �𝜔𝜔𝑐𝑐𝑣𝑣.

Increasing the bandwidth of the velocity loop, the design of the position loop 
becomes more and more complex (even small values of 𝐾𝐾𝑃𝑃𝑝𝑝 can make the 
closed-loop system unstable).
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Position control – Simulation example (I)

Let’s see the results of the P/PI control on a simulation example.
The main characteristics of the servomechanism are  

For the P/PI control
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Position control – Simulation example (II) 41
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Position control – Simulation example (III)

Let’s consider now �𝜔𝜔𝑐𝑐𝑝𝑝 = 0.7 and �𝜔𝜔𝑐𝑐𝑣𝑣 = 1.5.

In this case the closed-loop system is unstable.
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Load side P/PI control performance limitations (I)

Even in this case, root loci show that increasing the bandwidth of the 
velocity loop, performance of the motion control system referred to the load 
side decreases.

Let’s consider the transfer function from position set-point to load position
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Load side P/PI control performance limitations (II)

In order to characterize the performance limitations, we can study how the 
height of the resonance peak changes as a function of the velocity loop 
bandwidth.
This relation is given by the 𝐻𝐻∞ norm of the transfer function

Performance decrease is even
more evident when a load side
control architecture is considered.
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Servomechanism parameter identification (I)

To design the motion control system we need at least some of the 
parameters that describe its characteristics. In particular, we need an 
estimate of 𝜉𝜉𝑧𝑧, 𝜔𝜔𝑧𝑧 and 𝜌𝜌.
We will now introduce an algorithm to identify these parameters from 
experimental data.

First of all, consider that with a small bandwidth motion control system the 
closed-loop frequency response is very close to the open-loop one.

Furthermore, it can be shown that
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Servomechanism parameter identification (II)

We can thus adopt the following algorithm:
1. design a PID controller with 𝜔𝜔𝑐𝑐 ≪ �𝜔𝜔𝑧𝑧, where �𝜔𝜔𝑧𝑧 is a rough estimate of 

𝜔𝜔𝑧𝑧
2. execute an experiment (e.g., a sinusoidal chirp response) to get the 

graphical representation of 𝐹𝐹𝑚𝑚 𝑗𝑗𝜔𝜔
3. from the plot one can compute 

𝜔𝜔𝑧𝑧, 𝜔𝜔𝑝𝑝 and

4. compute
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PID: derivative action and wind-up (I)

Motion control is accomplished using PID regulators.
We already saw that PID regulators are characterized by the following 
control law

or, in the frequency domain, by

This expression is very useful to design the regulator, as it characterizes its 
dynamical behavior. However, there are some problems, particularly 
important in applications, that are not evident from this simplified 
representation.
Two of these peculiar aspects are:
• realization of the derivative action
• regulator wind-up
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PID: derivative action and wind-up (II)

The derivative action

corresponds to an a-causal system and cannot be realized in this form.
To make the derivative action realizable we introduce an high-frequency 
pole, that has also the effect of introducing a low-pass filtering action with 
respect to high frequency measurement noise.
The filtered derivative action has the following expression

where 𝑁𝑁 determines the frequency of the high frequency pole.
Increasing 𝑁𝑁 the range of frequencies at which the derivative action acts as 
the ideal one increases, but the amplification applied to measurement noise 
increases as well.
𝑁𝑁 is usually selected in the range 5 − 10.
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PID: derivative action and wind-up (III)

Commercial PIDs differ from their academic counterpart not only for the 
expression of the derivative action.
Commercial regulators usually implement a standardized version of the PID 
control law, called PID standard ISA

where 𝑌𝑌𝑠𝑠𝑝𝑝 is the reference signal, 𝑏𝑏 and 𝑐𝑐 are two parameters that allow to 
weight in a different way the reference signal and the measurement in the 
proportional and derivative actions.

A PID standard ISA is a two-degree-of-freedom regulator: we can define two 
different transfer functions, one from the reference signal to the control 
signal, the other one from the measurement signal to the control signal.
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PID: derivative action and wind-up (IV)

The transfer functions of the
feedforward and feedback blocks are

Using 𝑏𝑏 and 𝑐𝑐 one can select the zeros of the transfer function from set-
point to controlled variable independently of the feedback part of the 
controller.

Considering, for example, a plant whose transfer function is

we obtain
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PID: derivative action and wind-up (V)

Another problem that usually happens in applications is wind-up.
Any actuator is characterized by a maximum and minimum value of the 
physical variable on which it operates. We will represent this aspect 
introducing a symmetric saturation in the block diagram of the closed-loop 
system.

The saturation block is described by the following relation

If the regulator as an integral action the
saturation can generate an effect called
integral wind-up, that causes a decrease
in control performance.
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PID: derivative action and wind-up (VI)

Let’s consider a PID with only the integral action (I regulator), and assume 
that the error 𝑒𝑒 keeps the same sign (e.g., positive) for a long time.
Consider the following sequence of events:
• the state of the integrator (and, consequently, the output of the regulator) 

indefinitely increases exceeding the saturation value 𝑢𝑢𝑀𝑀
• as a consequence the actuator saturates, i.e., 𝑚𝑚 = 𝑢𝑢𝑀𝑀
• sooner or later 𝑦𝑦 exceeds the reference value 𝑦𝑦𝑑𝑑, making the error 𝑒𝑒

negative
• 𝑚𝑚 should now take values less than 𝑢𝑢𝑀𝑀
• to achieve this desired behavior, however, one should wait that the high 

value of the integrator state (wind-up), and thus the output 𝑢𝑢, decreases 
below 𝑢𝑢𝑀𝑀

The time required to the integrator state to take values less than 𝑢𝑢𝑀𝑀 can be 
rather long and, during this interval, there is a significant decay of control 
performance.
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PID: derivative action and wind-up (VII)

A first solution to overcome the integral wind-up is by changing the regulator 
implementation.

Consider, for example, a PI regulator

we could implement it in the following anti-windup configuration

When the saturation is not active, the saturation block is equivalent to a 
unitary gain and the regulator transfer function becomes
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PID: derivative action and wind-up (VIII)

Consider again the following sequence
of events:
• the error 𝑒𝑒 keeps the same sign

(e.g., positive) for a long time
• assuming 𝐾𝐾𝑃𝑃 > 0, then 𝑞𝑞 > 0
• assume that the actuator saturates, i.e., 𝑚𝑚 = 𝑢𝑢𝑀𝑀
• as the feedback block is a unitary gain transfer function, the steady-state 

value of 𝑧𝑧 is 𝑢𝑢𝑀𝑀
• sooner or later 𝑦𝑦 exceeds the reference value 𝑦𝑦𝑑𝑑, making the error 𝑒𝑒

negative
• when the sign of the error changes, the sign of 𝑞𝑞 changes as well and, as 

𝑧𝑧 = 𝑢𝑢𝑀𝑀, 𝑢𝑢 takes values less than 𝑢𝑢𝑀𝑀 (the actuator does not saturate 
anymore)
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PID: derivative action and wind-up (IX)

Another solution to the integral wind-up is by stopping the computation of 
the integral action when the actuator saturates (conditional integration).
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