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Motivations

A servomechanism (or servo) is composed of
- a motor
- atransmission chain
- aload
- 0One or more position sensors
- a control board, including a power stage

We will now introduce the characteristics of a motion control problem, i.e.,
how to control the position of the load regulating motor torque.

We will consider different scenarios, in terms of:

 number of available position sensors

» |ocation of each position sensor (motor side or load side)
 mechanical characteristics of the transmission chain (rigid or elastic)
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Modelling arigid servomechanism ()

We start introducing the model of a servomechanism with rigid transmission
chain.

First, consider the model of a DC motor.

] R L
> AN AL

V E

The voltage applied to armature windings generates a current that depends
on the motor characteristics (RL equivalent circuit) and the back-EMF
voltage.

It can be shown that the motor generates a torque proportional to the
armature current.

In classical DC motors, current commutation is operated by the commutator
and by brushes.

In robots and machine tools, brushless motors are usually adopted.
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Modelling arigid servomechanism (lI)

A DC motor is described by the following equations

t) =RI(t) +Ld1—(;) + E(t)

)
) = Koo (1) I{ | I
)
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Modelling arigid servomechanism (ll1)

If we assume that the transmission chain is rigid, the subsystem composed
by the motor, the transmission chain and the load is described by the

following equations
InGm + DmGm = T — Ts  Motor
J1g; = nTyus — T load
qm = Nnq| transmission chain

that can be merged obtaining
(Jm _|_Jlr) Qm —I_DmCIm = Tm — Ur

Prof. Luca Bascetta - I POLITECNICO DI MILANO




Modelling arigid servomechanism (V)

The model is represented by the following block diagram

Tl fri

Tm ;O_ > G:U(S) Qm}_ % dm
where
|
G,(s) =
+(5) Dy+s(Jn+Jp)
If friction D,,, is negligible, the model simplifies as
1 1
Gy(s) = -
I +J1r 8
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Modelling arigid servomechanism (V)

Combining the two models, we obtain the following block diagram

K |=
E
V .Y 1 I Trn 1 4
> IR > K m»_o "G’U(S) qmrg—mb
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Control system architecture (I)

K |«
E
Vo X 1 1 Tm 1| dm
> o by » K 29, "G’U(S) thg—»
Tir

Taking into account the structure of the model, we can simplify the design of
the control system using a cascaded control architecture.

We can identify three intermediate variables:
e motor current

* motor velocity

e motor position

that give rise to three loops.
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Control system architecture (ll)

K |«
]
q'(rin | Position qfrin | Velocity | 19 Current| V . R 1 I Tm. - 1] dm
— o control — Q> control — Q0 control | sL+R - K _’_O_’GU(S) - s _’
| 7

The cascaded control architecture is composed of:
« a Pl current controller
« a Pl velocity controller
* a P position controller

As in any cascaded control architecture the tuning of the control system is
performed starting from the inner loop.

We will now consider the design of each loop, under the assumption of rigid
transmission.
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Current control

K |«
E
Vo X- 1 I Tm 1] 9m
- sirr| | & >0—— Gy (s) amls—
Tir

The design of the current controller is based only on the electrical dynamics.

Considering that these dynamics are usually very fast, an high bandwidth
loop can be designed (thousand of rad/s).

Back-EMF acts on the loop as a slow load disturbance, as it depends on the
mechanical dynamics, and is thus rejected by the closed-loop system.

Thanks to the frequency separation between the electrical and mechanical
dynamics, the velocity regulator assumes that there is an algebraic relation
between the desired and actual current

Tu(t) = KI(t) = KI%(1)
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Velocity control (1)

Velocity control is accomplished
using a Pl controller

1 1+ s1;
Rpi(s) = Kp, (HE) = Kp, T 4
v 1%

The loop transfer function is given by

Kp i 14sT),
L,(s) = Rpi (s)G (s) = ~K 275

s sy

.d .
m \70 RPI(S) Tm_ Gv(S) 4m

Tir

O+

70

60

h
o

If a large value for T}, is selected, so that
a low frequency zero is generated, the
loop transfer function is approximated,
around the crossover frequency, by its
high-frequency approximation

@

L,(s) =~ S"’ = o, =Kpu !

Magnitude (dB)
— [ Ll =
L] = = ]

=
T

v

1/T1v W

10°
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Velocity control (1)

Summarizing, we will select the Pl parameters following the rules

Kp, = e,

u
— = (0.1+0.3) o,
YVIV ( ) V
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Position control

The velocity loop is seen by the
position loop as a first order g
low-pass filter. T

The plant transfer function used to
tune the position controller is thus

F()l 1 1
p\8)— = o
s 14+s/o, s

and the loop transfer function

1 Kp
LP(S) :KPva(S); — :

Selecting Kp, < wc, we have

Magnitude (dB)

COCP ~ Kpp

-70

10°
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Velocity feedforward (1)

Tir

- K qgn - A Tm_ - dm
—O—> P >é > RPI(S) > > G,U(S) >

dm

W |

In order to increase the performance of the system, we can introduce a
velocity feedforward action.

Sometimes a weighted feedforward action is used (ks € [0,1])

— Fsss

Tir

d .

d .
Il o Kp, ﬂ’é—’ Rp1(s)ms0—>| Gy(s) >

4m

Y

W |
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Velocity feedforward (I1)

If a unitary feedforward is considered, and the velocity measurement is
substituted by the derivative of the position measurement, it can be easily
shown that the P/Pl scheme is equivalent to a PID regulator.

4m

W |

\J

dm dm

Y

— 1 e O—> RPID(S) — e O—> GU(S)

w |
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. I
Velocity feedforward (lll)

We can easily show the
equivalence. !

m L >0— KPP ﬂbé:)—» RPI(S) Tm
Let’s compute the transfer
function of the control system

S

() = Rer(s) (s (5) — 5an(s) + K, (4a(5) — an(s) ) )
— K (147 ) (5 Kn,) (00) - an )

S]V

= Ren(s) (qh(5) — gn(s)

and
|
R s)=Kp |1+ — +5T;
pID(S) P( +STI+ D)
1 Kp Kp1;
Kp =K K — In = — T = Y
P PV(PP+]}V> D= I Kr Kp,
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Limitations of the rigid servo model

The design based on the rigid model of the servomechanism does not
reveal any limitation to the crossover frequency, i.e., it seems that the
bandwidth of the system can be arbitrarily increased.

In a real system, however, as the bandwidth increases undesired vibrations,
noise and torque saturation appear.

We conclude that the rigid model is too simple and it is not able to represent
all the control relevant dynamics.

We will now study a more complex model of the servomechanism that is
able to correctly interpret what happens to a real system when the
bandwidth increases.
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Two-mass model of a servomechanism (I)

To overcome the limitations of the rigid model,

let’'s assume that the motor is connected to the

load through an elastic transmission.
The model than becomes

JmQ’m _I_DmCZm = T — Uns
JiGi = nTps — 7

Tns = Kot (gm —1nq1) + Det (Gm — nqy)
and the corresponding block diagram is

Jn p,

motor model

load mode

transmission model

1| @ 1 |
S B J,lS -
q1
Y
n
Tm + 1 q.m 1 Q?TLJr . T?’TL.S’
Q Jm 8+ D, s Deys + Key
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Two-mass model of a servomechanism (ll)

Let’s consider the response of the system to a variation of motor torque,
neglecting load torque.

We can consider either the transfer function from motor torque to motor
position or to load position.

'

dm 1 dm
s

Y
P
<
3
—~
V)
~—

\/

nq';; 1 g
S

Y
Q
=3
—~
»
~—
\

The system can be thus interpreted as a SITO (Single Input Two Outputs)
dynamical system, whose transfer functions are given by

Gom(s) = Jirs? 4+ Dys + Ky
" J1pd 3 + (JDej + J;pDyy) 8% + (JKyy 4+ DDy ) s + DK,y
D K
GV[ (S) elS + el

Ty ds® + (IDy + 1D 82 + (JKoy + DinDet) s + DKo

where J;, = J;/n* and | = Ji. + Jp,.
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Two-mass model of a servomechanism (lI)

Assuming D,, = 0 and introducing the following parameters

= — 1nertia ratio

Kel

1
W, = J_lr E, = 2 W zero frequency and damping

w,=w-/1+p &,=&/1+p polefrequency and damping

the two transfer functions become

1—1—2§5—I— S—zo
Gym(S) é —
1422 —I—

rigid model
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Two-mass model of a servomechanism (lI)

Assuming D,, = 0 and introducing the following parameters

= — 1nertia ratio

K, |
W, = S 62

f dd '
7 2 N zero frequency and damping
W, =w;\/1+p &, =¢6,/1+p polefrequency and damping

_1
=7

the two transfer functions become

1—1—2§5—I— i
Gum(s) = =
Sl+2@ + =5
P
vi\S) = —
S 1+25P + 5 elastic behavior
p
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Two-mass model of a servomechanism (1V)

Finally, in the case of no load torque, the system is represented by the
following block diagram

dm nqi

Tm dm | m sz(S) R 1

— G om (3) 170,

W |
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Two-mass model of a servomechanism (V)

The natural frequencies w, and w, have a clear physical interpretation.

w,, the system natural frequency,
characterizes the zero-input response

w,, the locked frequency, characterizes
the oscillations of the load when the
motor is locked

We will now analyze the transfer function G,,,,,(s).
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Two-mass model of a servomechanism (VI)

Consider again transfer function G,,,,(s)

& 2

s 1+22—is+5)—22

D

Gum(s) =

Where are poles and zeros located in the complex plane?

We observg that Tm4
), X,
—ng—p:\/1+p>1 x\“x Q
a)z < wﬁ\\ b

as a consequence B N

* poles’ frequency is greater than ;
zeros’ frequency I
e poles’ damping is greater than :
zeros’ damping %
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Two-mass model of a servomechanism (VII)

Consider again transfer function G,,,,(s)

2
1+22—is+#

u
va(S) — ? 1 26}9 52
28+ =
20
15F
ol resonance peak
)
=)
O
-~
2 °f
=
-5 F
10 b _
anti-resonance peak

15 : -
107" 10° 10’
Normalized frequency (w/w,) p — 1 7 = 01
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Motor side P/PIl control architecture

Introducing now the elastic model into the P/PI control scheme, assuming
that only motor position/velocity measurements are available (as it usually
happens in robotics) and neglecting load torque, we obtain

Y
V)

Rp1(s) 22| Gy (5) -2 I o G (5) 2L

| J
Y

W |~
Y

Y
V)

Rp1(8) | Gy (5)-2s

\J

dm Glm(s) ngi

W |
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Velocity control (1)

Velocity control is accomplished Ayl Rpr(8) 2 G (5) 27
using a Pl controller T
1 1+ 577,
Rpi(s)=Kp, | 1+ —— | = Kp
(5) = Kp, ) T

The loop transfer function is given by

:
Kot 1457, 1255+ o2

AT S

D

L,(s) =Rpi(s)Gym(s) =

Let’s introduce the following a-dimensional parameter

- Kpu
@, =
COZ

that represents the crossover frequency computed using the rigid model and
normalized with respect to the anti-resonance frequency.

The smaller @, , the more cautious the project Is.
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Velocity control (1)

The integral time T; can be selected in such a way that the controller zero is
located one decade before the anti-resonance frequency

10
T, = —
wZ

Let’s look at the Bode plots we obtain with two different values of @, .

—
(&) ]
)

T

™rTT

=k
(&) ]
o)

a)cv — 0-5 H wcv — 1-5 o

=

o

o
—x
o
o

Magnitude (dB)
N
=
Magnitude (dB)
N
o

Phase (deg)

of of
50 —— The phase margin is always close to 90°
=)
or L of
Q«
o
-90 } S 90
[a
-180 =T el il kel 180 =T e e bl P
107 107 107" 10° 10 107 107 107" 10° 10
Normalized frequency Normalized frequency

p=1 & =0.1
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Velocity control (1)

From the previous result we conclude that both projects give rise to a
closed-loop system that is robust asymptotically stable.

Let’s try to analyze the Bode plot of the frequency response of the
complementary sensitivity function with @, = 1.5.

G
T

motor side

M
o

/
/ load side

Magnitude (dB)
A
=

@
=
T

-80

Here we have a resonance peak X

-2

10 107" 10° 10 10°

Normalized frequency (w/w )
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Velocity control (1V)

The clearest picture on the load oscillations is given by the root locus.
Let's consider the root locus with respect to @, .

q

—
U

There are two complex poles
whose damping is a function

\

of @, . r’g“
§ 05
Maximum damping is achieved 8
for % 0 —
@, ~07 = @, ~070, &,
&
£

We will select as design rule
@, ~ 0.7

/]

q

=
J

-1.2 -1 -0.8 0.6 -0.4 0.2 0 0.2
Real Axis (seconds™)

Root locus axis have been normalized with
respect to w,.
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- B O
Position control (1)

Position control is accomplished ;
using a P controller. y

The loop transfer function is given by ’

F,(s)

L,(s) = Kp,
where

Ly(s)
Fy(s) =
1+L,(s)
Let’s introduce the following a-dimensional parameter
Kp
P
a)Z
that represents the crossover frequency, computed using the rigid model,
and normalized with respect to the anti-resonance frequency.

Pl

(Dcp —
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Imaginary Axis (seconds’ﬂ)

Position control (Il)

Let’s consider again the root locus of the loop transfer function
F,(s) ~ @
Ly(s) = Kp,

— a)cp ?Fv (S)
with respect to @, and for different values of @, .

w. = 0. w., =1 w. = 1.
v v v
Root Locus Root Locus Root Locus

4 . . . 5 4

3F i

2F O T 2t
= =
= o

1F 8 81t x_o
5] @
2 f—) 2

0 - - Zof g o °
< <<

AF e £ o
£ £

2 g %‘_2 L
E E

3F at

740 7 016 0 5 0‘4 01 3 U‘:z ij 0 o J “ J

. . e - . . . -1.5 -1 0.5 0 -3 -2.5 -2 -1.5 -1 0.5 0 0.5

Real Axis (secondsﬂ

Real Axis (seconds’ﬁ Real Axis (seconds"')

Increasing the bandwidth of the velocity loop, the damping of the closed-
loop poles decreases.
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Position control — Simulation example (1)

Let’s see the results of the P/PI control on a simulation example.
The main characteristics of the servomechanism are

w,=200rad/s p=1 & =0.1
For the P/PI control
T, =10/w, @, =0.1

File Edit View Display Diagram Simulation Analysis Code Tools Help
i = (el i
bt - & -2 ¢ P ARET » ) v &~
P_PI_motore
® P_PI_mohDre -
»| PID
3l A
| —]
Derivative
il = action qm
L
2 O el
e P 3 Fi el B Gam
State-Space
R
Step
dgm ql
—{ =]
qm
dql
o]
g Clock T
>

Ready 100% oded5
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position [rad]

16 F

14t

=
(]
L]

="y
LI

=
to

=
o))

=
i

=
ha

=

w Cy

—
o

Position control — Simulation example (I1) 34

= motor

—
i

—l
(]

—— motor
load

=
o

position [rad]
o
D:P —
——
IIi

=
~

=
(%]

o

0.2

0.4

time [s]

o

0.6 0.8 1

o
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Motor side P/PI control performance limitations (I)

Root loci show that increasing the bandwidth of the velocity loop,
performance of the motion control system referred to the load side
decreases.

Can we quantify how much performance decreases?
Let’s consider the transfer function from position set-point to load position

nql(s) 20
Fgm(S): d
Qm(s) 0
-20
m
-
& 2N
g
=
£ 80
{0
=
-80
p=1 & =0.03 LLid
T, = 10/ o, asplLiiddiil 4 i §d0
(}')Cp =0.1 102 10™ 10° 10" 102

Normalized frequency (u.'h,-z]
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: T =
Motor side P/PI control performance limitations (ll)

In order to characterize the performance limitations, we can study how the
height of the resonance peak changes as a function of the velocity loop
bandwidth.

This relation is given by the H,, norm of the transfer function

1 A 1 p
OLe = ||Fim(9)|. = — E=E +—
28 20, 1+p
and depends on 20 e
e servomechanism
ot 15
characteristics
» adesign parameter of the ol
velocity loop )
#
3 s
D -
DLtexact
DLtapprﬂx.
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Load side P and motor side Pl control architecture

In some applications, e.g., in machine tools, a load side (instead of a motor
side) position control loop is adopted

ngq,

> va(s) Im

w |

ng, q.'m

w |

> Glm(s) ot

\
\
\ ]

o Kp, o8 o Rpy(s)|-me| G ()
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Position control (1)

Position control is still accomplished
using a P controller.

The loop transfer function is given by

Ly(s) = Kp, "f) Gim(5)
where
Ly(s)
Fls) = 1+L,(s)
and
1 4 225
Gim(s) = =~

ngj

—O—>

Kp,

L @n o Fy(S) Gm kE Gm Glm(s) ng
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Position control (Il)

Let’s consider again the root locus of the loop transfer function

Imaginary Axis (seconds‘1)

Ly(s) = Kp,

~~

We, = 0.5

Root Locus

F,(s)

\)

;

we, =1

Root Locus

w

[av

-

I

.—§ \
§1f
[ 8
¥ Lo 2%
<
=
L ® 2t P
| GC z jll07 2 ac z C l63
_Pmax , B Pmax ,
-2 -1 0 1 2 -3 -2 -1 0 1

Real Axis (seconds™

Real Axis (seconds™)

Imaginary Axis (seconds‘1)

Gin(s) = @, TFV(S)GZH’I(S)

with respect to @, and for different values of @, .

v
Root Locus

3 T .

2 / ]
1T\\\\\ - ¥ ]
0 e ®

1 / b

T W, ~ 0.5
, . Pmax ,

-3 -2 -1 0 1 2

Real Axis (seconds™

Increasing the bandwidth of the velocity loop, the design of the position loop
becomes more and more complex (even small values of Kp, can make the

closed-loop system unstable).
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Position control — Simulation example (1)

Let’s see the results of the P/PI control on a simulation example.
The main characteristics of the servomechanism are

w,=200rad/s p=1 & =0.1
For the P/PI control
T, =10/, @, =0.1

File Edit View Display Diagram Simulation Analysis Code Tools Help

k- & EEe-E-wg®P = - w o @ v &
| P_PI_carico
| ® |[alP_PI_carico -
I
) ]
action am

O/ @ 4EES
T

v
taum
R i e e W S
_. y=Cx+Du
Fl dgm
EJ—’ State-Space L

Step

dgm ql

gl

100% oded5

Prof. Luca Bascetta - I POLITECNICO DI MILANO




position [rad]
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Position control — Simulation example (lll)

Let’s consider now &c, = 0.7 and @, = 1.5.

1500

1000 F

500 r

position [rad]
=

-500 f

-1000 F

-1500

0 0.2 0.4 0.6 0.8 1
time [s]

In this case the closed-loop system is unstable.
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Load side P/PIl control performance limitations ()

Even in this case, root loci show that increasing the bandwidth of the
velocity loop, performance of the motion control system referred to the load

side decreases.

Let’s consider the transfer function from position set-point to load position

ngp\s
Fi(s) = 24i0)
ngy (s)
p=1 & =003
I, = IO/OJZ
@, = 0.1

40

20

Magnitude (dB)
B 0N
= =

o))
o

-80

-100

120 N
107 10"

10" 10’ 10°

Normalized frequency (-..a.'l'ru..'z]
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Load side P/PI control performance limitations (Il) .

In order to characterize the performance limitations, we can study how the
height of the resonance peak changes as a function of the velocity loop
bandwidth.

This relation is given by the H,, norm of the transfer function

1 A
~ — a
28

OLoo = |[Ft(s) |

Performance decrease is even
more evident when a load side
control architecture is considered.

_(dB)

QL

QL exact
QL approx.

10" 10° 10"

5617
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Servomechanism parameter identification (1)

To design the motion control system we need at least some of the
parameters that describe its characteristics. In particular, we need an
estimate of ¢,, w, and p.

We will now introduce an algorithm to identify these parameters from
experimental data.

First of all, consider that with a small bandwidth motion control system the
closed-loop frequency response is very close to the open-loop one.

Furthermore, it can be shown that
. ‘Fm(].wp)} L p
Fn(joy) 4€z2 1+p?

20 Closed-loop| |
2 Open-loop

Magnitude (dB)
: P
[

i
=
L

60 F

107 107" 10" 10"

Freauencv (rad/s)
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Servomechanism parameter identification (Il)

We can thus adopt the following algorithm:

1. design a PID controller with w, < @,, where @, is a rough estimate of
wZ

2. execute an experiment (e.g., a sinusoidal chirp response) to get the
graphical representation of |F,,(jw)|

3. from the plot one can compute
Wy, Wy and

FaB = ‘Fm(jwp)’d3_|Fm(jwz)|dB U
4. compute |
r=10056) g |
) "é’-:}-u-
p = & —1 %-46 |
(1)22 = 50l
fg, B 1 P 60 |
2 2ﬁl_|_p 70 — A K

107 10" 10]

Freauencv (rad/s)
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PID: derivative action and wind-up (1)

Motion control is accomplished using PID regulators.

We already saw that PID regulators are characterized by the following
control law

u(t) = Kpe(t) + K; /Ote(’c)d’c—l—KD

or, in the frequency domain, by

R(s) = 58 ~ Kp (1+$+sTD) ~ Kp

de(t)
dt

TiTps® 4+ Tys + 1
s1y

This expression is very useful to design the regulator, as it characterizes its
dynamical behavior. However, there are some problems, particularly
Important in applications, that are not evident from this simplified
representation.

Two of these peculiar aspects are:
» realization of the derivative action
* regulator wind-up
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PID: derivative action and wind-up (I

The derivative action

B de(t)
u(t) = Kp1p s

corresponds to an a-causal system and cannot be realized in this form.

To make the derivative action realizable we introduce an high-frequency
pole, that has also the effect of introducing a low-pass filtering action with
respect to high frequency measurement noise.

The filtered derivative action has the following expression
STD
RD(S) = Kp T
I 452
where N determines the frequency of the high frequency pole.

Increasing N the range of frequencies at which the derivative action acts as
the ideal one increases, but the amplification applied to measurement noise
Increases as well.

N is usually selected in the range 5 — 10.

RD (S) = KPTDS
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PID: derivative action and wind-up (lll)

Commercial PIDs differ from their academic counterpart not only for the
expression of the derivative action.

Commercial regulators usually implement a standardized version of the PID
control law, called PID standard ISA

U(5) = K (DY) = Y(5) + S B6) + 1 €Xon(9) = Y(9) )

where Y, is the reference signal, b and ¢ are two parameters that allow to

weight in a different way the reference signal and the measurement in the
proportional and derivative actions.

A PID standard ISA is a two-degree-of-freedom regulator: we can define two
different transfer functions, one from the reference signal to the control
signal, the other one from the measurement signal to the control signal.
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PID: derivative action and wind-up (1V)

The transfer functions of the Yop Gys(s)b—o U
feedforward and feedback blocks are ‘

1 STD
Gri(s) =Kp b+ —
15 (8) P( +ST1+61+STD/N)

\J

1 STD
G =Kp | 1

Using b and c one can select the zeros of the transfer function from set-
point to controlled variable independently of the feedback part of the
controller.

Considering, for example, a plant whose transfer function is

|
G(s) = =
() = 5
we obtain
Y(s) G(s) ~ es*TpTy+bsTy+ 1

— S —
YSp(S) ff( ) 1+ G(S)Gfb(s) S3uTTIP +s2TpTy + sTy + 1
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PID: derivative action and wind-up (V)

Another problem that usually happens in applications is wind-up.

Any actuator is characterized by a maximum and minimum value of the
physical variable on which it operates. We will represent this aspect

Introducing a symmetric saturation in the block diagram of the closed-loop
system.

20— R(s) FYs| Sat |2 G(s) L

The saturation block is described by the following relation
m = sign(u) min (abs(u), upy) MO

If the regulator as an integral action the

saturation can generate an effect called UM

iIntegral wind-up, that causes a decrease ‘

In control performance.

/S _uM
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PID: derivative action and wind-up (VI)

Let’s consider a PID with only the integral action (I regulator), and assume
that the error e keeps the same sign (e.g., positive) for a long time.

Consider the following sequence of events:

the state of the integrator (and, consequently, the output of the regulator)
indefinitely increases exceeding the saturation value uy,

asS a consequence the actuator saturates, i.e., m = Uy

sooner or later y exceeds the reference value y¢, making the error e
negative

m should now take values less than uy,

to achieve this desired behavior, however, one should wait that the high

value of the integrator state (wind-up), and thus the output u, decreases
below uy,

The time required to the integrator state to take values less than u,, can be
rather long and, during this interval, there is a significant decay of control
performance.
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PID: derivative action and wind-up (VII)

A first solution to overcome the integral wind-up is by changing the regulator
Implementation.

Consider, for example, a Pl regulator

R(s) = Kp (1 + é)

we could implement it in the following anti-windup configuration

_6) KP 2 »>O0——> Sat m >

z
1 <l

l-l—STI

When the saturation is not active, the saturation block is equivalent to a
unitary gain and the regulator transfer function becomes

1 1
R(S):KPl — = Kp 1+ﬁ
 1+sT; !
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Consider again the following sequence 2 Kp Lo UL gar |
of events:

PID: derivative action and wind-up (VIII)

\j

A
the error e keeps the same sign ‘ 1

(e.g., positive) for a long time ety
assuming Kp > 0,then g > 0
assume that the actuator saturates, i.e., m = uy,

as the feedback block is a unitary gain transfer function, the steady-state
value of z is uy,

sooner or later y exceeds the reference value y¢, making the error e
negative

when the sign of the error changes, the sign of g changes as well and, as
Z = uy, u takes values less than u,, (the actuator does not saturate
anymore)

A
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PID: derivative action and wind-up (IX)

Another solution to the integral wind-up is by stopping the computation of
the integral action when the actuator saturates (conditional integration).

/
|
=]

AN O_r_7~£ -
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