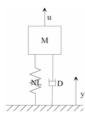
Automatica

(Prof. Bascetta)

Primo appello Anno accademico 2006/2007 17 Luglio 2007

Cognome:	
Nome:	
Matricola:	
	Firma:

Avvertenze:


- Il presente fascicolo si compone di **8** pagine (compresa la copertina). Tutte le pagine utilizzate vanno firmate.
- Durante la prova non è consentito uscire dall'aula per nessun motivo se non consegnando il compito o ritirandosi.
- Nei primi 30 minuti della prova non è consentito ritirarsi.
- Durante la prova non è consentito consultare libri o appunti di alcun genere.
- Non è consentito l'uso di calcolatrici con display grafico.
- Le risposte vanno fornite **esclusivamente negli spazi** predisposti. Solo in caso di correzioni o se lo spazio non è risultato sufficiente, utilizzare l'ultima pagina del fascicolo.
- La chiarezza e l'**ordine** delle risposte costituiranno elemento di giudizio.
- Al termine della prova va consegnato **solo il presente fascicolo**. Ogni altro foglio eventualmente consegnato non sarà preso in considerazione.

Hirma:		
1 IIIIIa	 	

 $\label{thm:condition} \mbox{Utilizzare questa pagina SOLO in caso di correzioni o se lo spazio a disposizione per qualche domanda non è risultato sufficiente$

Esercizio 1

Si consideri il sistema meccanico riportato in figura:

in cui M=1, D=1 e NL è una molla non lineare che soggetta ad un allungamento Δx genera una forza di richiamo $F=K\Delta x^3$ con K=1.

1.1 Si scrivano le equazioni del sistema dinamico che descrive il sistema meccanico.

1.2 Si ricavi il punto di equilibrio corrispondente all'ingresso costante $u = \overline{u} = Mg$, proponendo un'interpretazione fisica del risultato ottenuto.

1.3 Si scrivano le equazioni del sistema linearizzato nell'intorno del punto di equlibrio ricavato precedentemente.

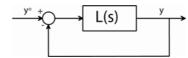
Firma:			
1 11 111a	 	 	

1.4 Si discuta la stabilità del sistema linearizzato proponendo un'interpretazione fisica del risultato ottenuto.

Esercizio 2

Si consideri il sistema dinamico di funzione di trasferimento

$$G(s) = 30 \frac{s-1}{s(s+3)}$$


2.1 Si determinino: il guadagno statico/generalizzato, il tipo, le costanti di tempo di poli/zeri di G(s).

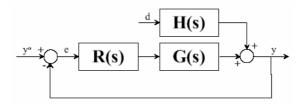
2.2 Si tracci l'andamento qualitativo della risposta all'impulso unitario.

2.3	Si ricavi l'espressione analitica	(y(t)))=)) della risposta	tracciata	qualitativamente	al punto	precedente.
-----	-----------------------------------	--------	-----	------------------	-----------	------------------	----------	-------------

2.4 Si traccino i diagrammi di Bode asintotici del modulo e della fase della risposta in frequenza associata a G(s).

Si consideri un generico sistema dinamico retroazionato:

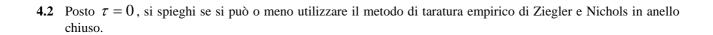
in cui
$$L(s) = \frac{100}{s(1+0.1s)(1+0.002s)}$$
.


3.1 Si discuta la stabilità del sistema in anello chiuso.

3.2 Si determinio approssimativamente il tempo di assestamento e lo smorzamento di eventuali oscillazioni della risposta di y ad uno scalino unitario di y^o .

3.3 Si scrivano le istruzioni MATLAB che consentono di definire L(s), ricavare i parametri necessari alla discussione della stabilità (punto 1) e di tracciare in modo esatto la risposta allo scalino unitario di y^o .

Esercizio 4


Si consideri il seguente sistema di controllo:

dove
$$G(s) = \frac{10}{1 + 0.1s} e^{-s\tau}$$
, $H(s) = \frac{1}{1 + 5s}$.

- **4.1** Posto $\tau = 1$, si determini la funzione di trasferimento R(s) del regolatore in modo tale che
- ightharpoonup l'errore a transitorio esaurito sia nullo quando $y^{o}(t) = sca(t)$ e d(t) = 0
- \succ il margine di fase $arphi_m$ sia maggiore o uguale di 55°
- > la pulsazione critica sia approssimativamente massimizzata.

173	rma:		
- F1	rma:		

4.3 Posto $\tau = 0$, si determini la funzione di trasferimento C(s) di un compensatore in andata del disturbo d(t) (supposto ovviamente misurabile).