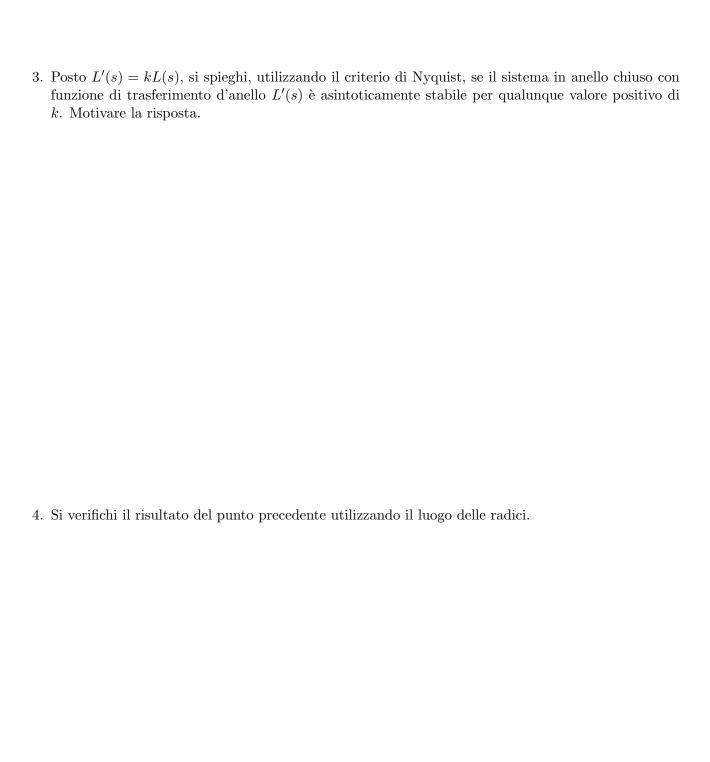
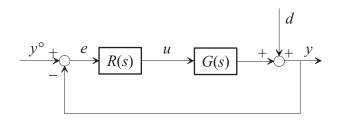

ESERCIZIO 1


Si consideri il sistema di controllo di figura, con y variabile controllata e y^o riferimento

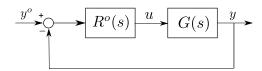
in cui
$$L(s) = \frac{10}{(1+s)^2}$$
.


1. Si disegni il diagramma di Nyquist associato alla funzione di trasferimento d'anello L(s).

2. Si studi, utilizzando il criterio di Nyquist, la stabilità del sistema in anello chiuso.

ESERCIZIO 2

Si consideri il seguente sistema di controllo:


dove
$$G(s) = \frac{10}{(1+s)^2 (1+s/3)}$$
.

- 1. Si determini la funzione di trasferimento R(s) del regolatore in modo tale che:
 - con un riferimento $y^{\circ}(t) = 10sca(t)$, e in assenza del disturbo d, l'errore $e(t) = y^{\circ}(t) y(t)$ soddisfi la limitazione, a transitorio esaurito, $|e_{\infty}| < 0.15$;
 - \bullet il margine di fase φ_m sia maggiore o uguale di 50°;
 - la pulsazione critica ω_c sia maggiore o uguale di 1 rad/s;
 - il controllore sia di ordine non superiore a 2.

2. Si disegni lo schema a blocchi del sistema di controllo del presente esercizio comprensivo di un compensatore del disturbo d .	-
3. Senza determinarne la funzione di trasferimento, si scriva la relazione che deve essere soddisfatta dalla risposta in frequenza del compensatore affinché l'effetto di un disturbo $d(t) = \sin(2t)$ sia an nullato a transitorio esaurito sull'uscita y .	

ESERCIZIO 3

Si consideri il sistema di controllo a tempo continuo in figura:

dove $R^{o}(s) = \frac{3}{s}$ e $G(s) = \frac{10}{(s+10)}$.

1. Si determini un valore adeguato del tempo di campionamento T_C . Con la scelta effettuata e tenendo conto del ritardo intrinseco di conversione, si verifichi che il margine di fase sia maggiore di 60° .

2. Si ricavi, adottando la trasformazione di Tustin (del trapezio), la funzione di trasferimento $R^*(z)$ del corrispondente regolatore digitale.

3.	Considerando il regolatore digitale $R^*(z)$ trovato al punto precedente, si espliciti l'equazione all differenze che lega $u^*(k)$ ed $e^*(k)$.
4.	Si chiarisca, giustificando la risposta, se l'equazione alle differenze trovata al punto precedent
	corrisponde a un sistema dinamico strettamente proprio o no.