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EXERCISE 1

1. Consider the manipulator sketched in the picture, where the mass of the second link is assumed to
be concentrated at the end-effector:

)

Find the expression of the inertia matrix B(q) of the manipulator.

NOTHING

2. Compute the matrix C(q, ) of the Coriolis and centrifugal terms! for this manipulator.

NOTHING

3. Write the dynamic model for this manipulator.

NOTHING
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4. For a generic manipulator without gravitational and friction effects, show that the equation:
a" (Bla) —2C(a. @) 4 =0

is valid for any choice of the Coriolis and centrifugal matrix C(q, q).
NOTHING

EXERCISE 2

Consider a kinematically redundant manipulator.

1. Write the general expression of the solutions of the inverse kinematics problem at velocity level.

NOTHING

2. Consider the weighted pseudo inverse method for the solution of the inverse kinematics of a re-
dundant manipulator. Write the expression of the cost function and discuss a criterion to select the
weights.

NOTHING

3. The inverse kinematics at velocity level for a redundant manipulator is often implemented in closed-
loop. Explain the reason for this and sketch the block diagram for such a closed-loop scheme.

NOTHING

4. Consider now motion planning of the end-effector position. If the end-effector task is expressed in
terms of position only, what is the minimum number of joints for the manipulator to be redundant
with respect to this task?

NOTHING

EXERCISE 3
Consider a car-trailer system, constituted by a trailer equipped with a fixed wheel and a car equipped
with two steering wheels, shown in the figure below.




1. Determine the configuration vector and show the configuration variables on the figure above.

The car-trailer robot configuration, with reference to the picture below, is represented by vector
q=[z,9,0,0., b1, p2], where (x,y) is the position of the car rear wheel contact point.

2. Derive the kinematic constraints that allow to determine the kinematic model of the car-trailer
system, and write them in Pfaffian form.

We can write the pure rolling constraints referred to each wheel of the car and of the trailer as
follows

Z1sin (0 + ¢1) —yr1cos(0+¢1) =0
& sin (0 + ¢2) — ycos (0 + ¢2) =0
& sin (6¢) — gecos (0:) =0 (3)

where (z1,y1) is the position of the car front wheel contact point, and (zy,y;) the position of the
trailer wheel contact point.

We can relate the position of the front wheel contact point and of the trailer wheel contact point to
(z,y) through a rigidity constraint

r1 =2+ £cosb

y1 =y + £sind
and

Ty = — dcos by

Yy =y — dsin 0,
Differentiating the two relations with respect to time we obtain
iy =& — 0sind
91 =9+ 0 cosb
and
iy = @ + dfy sin 6,
Y =1 — dét cos 0,



Substituting these relations in (1) and (3) we obtain

zsin (6 + ¢1)
& sin (0 + ¢2)

& sin (6;)

—gcos (0 + ¢1) —Lhcos gy =0

—gycos(0+¢2) =0
df; =0

—ycos (6;) —

The three constraints that describe the car-trailer can be written in Pfaffian form as
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3. Consider the following equations

—cos (0 4+ ¢1) —Lcospy
—cos (0 + ¢2) 0
) —cos (6;) 0

& =vdlcos(p1)cos (0 + ¢2)
g = vdlcos (¢1)sin (0 + ¢2)
0 = vdsin (¢ —
0; = vl cos (¢1) sin (6;
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Is this the kinematic model of the car-trailer system? Clearly motivate the answer and support it

with a theoretical proof.

First of all, matrix

has rank equal to 3, and thus the three vectors are linearly independent.
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It is then easy to check that the three columns of the previous matrix are vectors in the null of

AT (q).

. Consider now the car without the trailer, and assume the rear wheel is fixed while the front is
steerable. The car velocity and front steering position are constrained as follows

0<v<w

m < & < dum



How should we limit the linear and angular velocity of the canonical model, in order to be consistent
with these constraints?

The relation between the steering angle and the unicycle velocities is

wu
t —_— —
an ¢ 7
Then constraint

can be transformed into
tan ¢, < tan¢ < tan ¢y

and

tan ¢, tan ¢
<w<
L —Y='T

For the linear velocity the constraint remains unchanged

v

0<v<w

EXERCISE 4

1. Two important parts of an autonomous navigation system are the local and the global planner.
What are the most important characteristics of these two functionalities?

None

2. Explain what are the advantages of structuring the navigation system in a hierarchical way, separ-
ating local from global planning.

None

3. Consider now as global planner RRT*. Write the pseudocode of the rewire procedure, and explain
the role of this procedure inside the RRT* algorithm and its connection with optimality.

None

4. RRT* is used to plan the path of an electric vehicle, whose battery pack can be recharged when the
vehicle travels a hill. Can the function

¢ (o) = length (o) + discharge (o)

where o is a path, lenth is the function that computes the length of a path, and discharge the function
that computes the battery discharge (or charge if the value is negative) that occurs travelling a path,
be used as cost for the planner?



None



