Automatica

(Prof. Bascetta)

Quarto appello Anno accademico 2008/2009 26 Gennaio 2010

Cognome:	
Nome:	
Matricola:	
	Firma:

Avvertenze:

- Il presente fascicolo si compone di **8** pagine (compresa la copertina). Tutte le pagine utilizzate vanno firmate.
- Durante la prova non è consentito uscire dall'aula per nessun motivo se non consegnando il compito o ritirandosi.
- Nei primi 30 minuti della prova non è consentito ritirarsi.
- Durante la prova non è consentito consultare libri o appunti di alcun genere.
- Non è consentito l'uso di calcolatrici con display grafico.
- Le risposte vanno fornite **esclusivamente negli spazi** predisposti. Solo in caso di correzioni o se lo spazio non è risultato sufficiente, utilizzare l'ultima pagina del fascicolo.
- La chiarezza e l'**ordine** delle risposte costituiranno elemento di giudizio.
- Al termine della prova va consegnato **solo il presente fascicolo**. Ogni altro foglio eventualmente consegnato non sarà preso in considerazione.

Hirma:		
1 IIIIIa	 	

 $\label{thm:condition} \mbox{Utilizzare questa pagina SOLO in caso di correzioni o se lo spazio a disposizione per qualche domanda non è risultato sufficiente$

Esercizio 1

Si consideri il sistema

$$\begin{cases} \dot{x}_1(t) = u(t)\cos(x_1(t)) - \ln(x_2(t)) + 1\\ \dot{x}_2(t) = x_1(t)(x_2(t) - 1) + \cos(0.5x_1(t))u(t)\\ y(t) = \sin(0.5x_1(t)) + x_2(t)(u(t) + 1) \end{cases}$$

1.1 Si dica per quale valore \overline{u} dell'ingresso esso ha uno stato di equilibrio in $\overline{x} = \begin{bmatrix} \overline{x}_1 \\ \overline{x}_2 \end{bmatrix} = \begin{bmatrix} \pi \\ 1 \end{bmatrix}$.

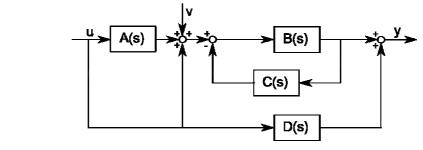
1.2 Si calcoli l'uscita \overline{y} corrispondente a tale stato di equilibrio.

1.3 Si scrivano le equazioni del sistema linearizzato nell'intorno del punto di equilibrio \bar{x} .

1.4 Si calcoli la funzione di trasferimento del sistema linearizzato nell'intorno del punto di equilibrio ricavato precedentemente e se ne discuta la stabilità.

Esercizio 2

Si consideri il sistema di figura

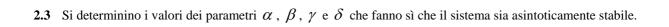


dove
$$A(s) = \frac{2}{s^2 - \alpha s + \beta}$$
, $B(s) = \frac{1}{(3+s)(2+s)(1+s)}$, $C(s) = \frac{\gamma}{s}$, $D(s) = \frac{\delta}{s^2 + s + 8}$.

2.1 Si determini la trasformata di Laplace Y(s) di y(t), in funzione della trasformate U(s) e V(s) di u(t) e v(t).

2.2 Si calcoli l'espressione analitica di y(t) in risposta ad uno scalino unitario di v(t) con u(t) = 0 e $\gamma = 0$.

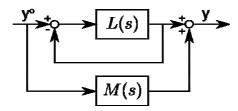
т.			
Hirma:			



2.4 Si dica se è necessario e/o sufficiente che le singole funzioni di trasferimento
$$A(s)$$
, $B(s)$, $C(s)$, $D(s)$ siano asintoticamente stabili perché lo sia il sistema nel suo complesso.

Esercizio 3

Si consideri il sistema di figura



dove
$$L(s) = \frac{3}{(s+1)(s+5)}$$
, $M(s) = \frac{4}{s+6}$.

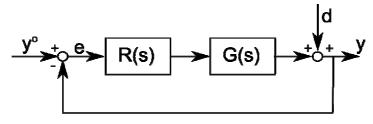
3.1 Si verifichi che esso è asintoticamente stabile.

3.2 Si calcoli analiticamente la risposta asintotica $y_{\infty}(t) = \lim_{t \to \infty} y(t)$ all'ingresso $y^{o}(t) = \sec t + \sin(3t)$.

3.3 Si scrivano le istruzioni MATLAB che consentono di definire L(s) e M(s) e tracciare l'andamento dell'uscita y(t) in risposta ad uno scalino unitario sul riferimento y^o .

Esercizio 4

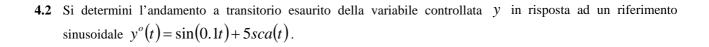
Si consideri il seguente sistema di controllo:



dove
$$G(s) = \frac{0.1}{(1+10s)(1+s)(1+0.1s)}$$

- **4.1** Si determini la funzione di trasferimento R(s) del regolatore in modo tale che
- \geqslant $|e_{\infty}(t)| \le 0.4$ quando $y^{\circ}(t) = 2\operatorname{ram}(t)$ e $d(t) = \sin(0.1t)$;
- $\triangleright \ \omega_c \le 10 \, rad/s \ \mathrm{e} \ \varphi_m \ge 42^\circ;$
- > l'ordine del regolatore sia non maggiore di 3.

Ciamo.			
rima:			



4.3 Si dica, motivando la risposta, se al sistema con funzione di trasferimento G(s) è applicabile il metodo empirico di taratura di Ziegler e Nichols in anello chiuso.