Fondamenti di automatica

(Prof. Bascetta)

Prima prova scritta intermedia Anno accademico 2014/2015 5 Maggio 2015

Cognome:	
Nome:	
Matricola:	
	Firma:

Avvertenze:

- Il presente fascicolo si compone di 8 pagine (compresa la copertina). Tutte le pagine utilizzate vanno firmate.
- Durante la prova non è consentito uscire dall'aula per nessun motivo se non consegnando il compito o ritirandosi.
- Nei primi 30 minuti della prova non è consentito ritirarsi.
- Durante la prova non è consentito consultare libri o appunti di alcun genere.
- Non è consentito l'uso di calcolatrici con display grafico.
- Le risposte vanno fornite **esclusivamente negli spazi** predisposti. Solo in caso di correzioni o se lo spazio non è risultato sufficiente, utilizzare l'ultima pagina del fascicolo.
- La chiarezza e l'**ordine** delle risposte costituiranno elemento di giudizio.
- Al termine della prova va consegnato **solo il presente fascicolo**. Ogni altro foglio eventualmente consegnato non sarà preso in considerazione.

Firma:			
1 IIIIIa	 	 	

 $\begin{tabular}{ll} Utilizzare questa pagina SOLO in caso di correzioni o se lo spazio a disposizione per qualche domanda non è risultato sufficiente \\ \end{tabular}$

Esercizio 1

Si consideri il sistema dinamico di equazioni:

$$\begin{cases} \dot{x}_1 = -x_1 + \alpha x_2 + u \\ \dot{x}_2 = -2x_2 + x_3 \\ \dot{x}_3 = 2x_1 - x_3 \end{cases}$$

$$y = x_2$$

1.1 Si determini l'insieme di valori del parametro α per cui il sistema è completamente raggiungibile.

1.2 Si determini l'insieme di valori del parametro α per cui il sistema è completamente osservabile.

1.3 Si determini l'insieme di valori del parametro α per cui il sistema è asintoticamente stabile.

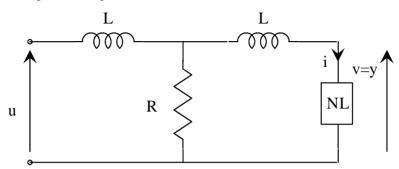
T:		
Firma:	 	

1.4 Si spieghi perché la stabilità è *proprietà strutturale* per un generico sistema dinamico lineare tempo invariante.

Esercizio 2

2.1 Si consideri un generico sistema dinamico di funzione di trasferimento G(s). Si dia la definizione precisa di "risposta in frequenza" del sistema e si spieghi a quale classe di sistemi si applica la definizione.

2.2 Si consideri ora il sistema dinamico descritto dalla funzione di trasferimento:


$$G(s) = 10 \frac{(1+0.1s)}{(1-0.1s)^2}$$

e si tracci il diagramma di Bode asintotico del modulo e della fase della risposta in frequenza.

	Firma:
2.3	Si tracci il diagramma polare qualitativo della risposta in frequenza del sistema al punto precedente.
2.4	Si calcoli il valore del modulo e della fase della risposta in frequenza del sistema al punto 2.2 corrispondente alla pulsazione 100 rad/s, e si spieghi, motivando la risposta, se al sistema è applicabile il teorema della risposta in frequenza.

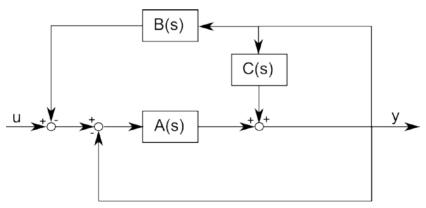
Esercizio 3

Si consideri la rete elettrica riportata in figura:

in cui l'elemento non lineare NL stabilisce tra la corrente i che l'attraversa e la tensione v ai suoi capi la relazione: $v = i^3$.

3.1 Si scrivano le equazioni del sistema dinamico corrispondente.

3.2 Posto L=1, R=3, si determini il punto di equilibrio corrispondente all'ingresso costante $u=\overline{u}=27$.


Firma:		
1 11 111a	 	

3.3 Si scriva l'espressione del sistema linearizzato nell'intorno dello stato di equilibrio determinato al punto precedente.

3.4 Si scrivano le istruzioni MATLAB che consentono di tracciare la risposta allo scalino del sistema linearizzato determinato al punto precedente.

Esercizio 4

Si consideri il seguente schema a blocchi:

4.1 Si determini la funzione di trasferimento da u a y.

irmo.	
firma:	

4.2 Si spieghi se è necessario e/o sufficiente che A(s) e/o B(s) e/o C(s) siano asintoticamente stabili perché lo sia il sistema nel suo complesso.

4.3 Posto: $A(s) = \frac{\alpha}{s+1}$, $B(s) = \frac{2}{s-1}$, $C(s) = \frac{\alpha}{s}$, si discuta la stabilità del sistema risultante dallo schema a blocchi al variare del parametro α .

4.4 Posto $\alpha = 1$, si determinino, se possibile, il valore iniziale e finale della risposta di y ad uno scalino unitario in u.