Fondamenti di automatica

(Prof. Bascetta)

Secondo appello Anno accademico 2014/2015 3 Settembre 2015

Cognome:	
Nome:	
Matricola:	
	Firma:

Avvertenze:

- Il presente fascicolo si compone di 8 pagine (compresa la copertina). Tutte le pagine utilizzate vanno firmate.
- Durante la prova non è consentito uscire dall'aula per nessun motivo se non consegnando il compito o ritirandosi.
- Nei primi 30 minuti della prova non è consentito ritirarsi.
- Durante la prova non è consentito consultare libri o appunti di alcun genere.
- Non è consentito l'uso di calcolatrici con display grafico.
- Le risposte vanno fornite **esclusivamente negli spazi** predisposti. Solo in caso di correzioni o se lo spazio non è risultato sufficiente, utilizzare l'ultima pagina del fascicolo.
- La chiarezza e l'**ordine** delle risposte costituiranno elemento di giudizio.
- Al termine della prova va consegnato **solo il presente fascicolo**. Ogni altro foglio eventualmente consegnato non sarà preso in considerazione.

Firma:		
1 111114	 	

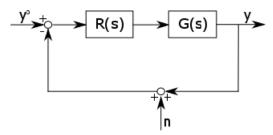
 $\label{thm:case} \mbox{Utilizzare questa pagina SOLO in caso di correzioni o se lo spazio a disposizione per qualche domanda non è risultato sufficiente$

Esercizio 1

Si consideri il seguente sistema dinamico:

$$\begin{cases} \dot{x}_1 = x_1^2 + x_1 - 2 \\ \dot{x}_2 = -x_1 + x_2 + u \\ y = x_1 + x_2 \end{cases}$$

1.1 Si determinino i punti di equilibrio corrispondenti all'ingresso costante $u = \overline{u} = 0$.


1.2 Si scriva l'espressione del sistema linearizzato nell'intorno degli stati di equilibrio determinati al punto precedente.

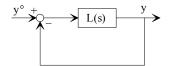
1.3 Si valuti se gli stati di equilibrio determinati al punto 1.1 sono stabili, asintoticamente stabili o instabili.

1.4 Si valuti se i sistemi linearizzati determinati al punto 1.2 sono completamente raggiungibili.

Esercizio 2

Si consideri il seguente sistema di controllo:

dove
$$G(s) = \frac{1-s}{(1+0.1s)^2}$$


- **2.1** Si determini la funzione di trasferimento R(s) del regolatore, in modo tale che:
- L'errore a transitorio esaurito sia nullo quando $y^{\circ}(t) = sca(t)$ e n(t)=0.
- Un disturbo $n(t) = \sin(\omega t)$, con $\omega \ge 2$ rad/s, sia attenuato sull'uscita y almeno di un fattore 10.
- Il margine di fase φ_m sia maggiore o uguale di 60°.
- La pulsazione critica sia maggiore o uguale di 0.2 rad/s.
- Il regolatore abbia ordine minore o uguale a due.

	Firma:
	i iiiid
2.2 Si elenchino le condizioni affinché un sistema dinamico sia a fase mi	nima
2.2 Si elencinno le condizioni attiniche dii sistema dinanneo sia a lase mi	mma.

2.3 Si spieghi se il sistema dinamico rappresentato dalla funzione di trasferimento G(s) è a fase minima o a fase non minima. Nel caso sia a fase non minima si ricavi una funzione di trasferimento equivalente (ovvero che abbia il medesimo diagramma di Bode del modulo) a fase minima.

Esercizio 3

Si consideri il sistema dinamico in retroazione:

in cui
$$L(s) = \rho \frac{(s-2)(s+1)}{(s+2)^2(s-1)^2}$$
.

3.1 Si tracci il luogo delle radici diretto.

3.2 Si tracci il luogo delle radici inverso.

ъ.			
Firma:	 	 	

3.3	Sulla base	dei 1	uoghi	tracciati,	si	determini	l'insieme	dei	valori	di	ρ	per	cui i	1 s	sistema	in	anello	chiuso	è
	asintoticam	ente s	stabile																

3.4 Per $\rho = 1$ si disegni il diagramma di Nyquist e si valuti, utilizzando il criterio di Nyquist, la stabilità del sistema in anello chiuso.

Esercizio 4

Si consideri un sistema dinamico a tempo discreto descritto dalla seguente funzione di trasferimento

$$G(z) = \frac{z-1}{z^2 + 3z + 2} .$$

4.1 Si determinino tipo e guadagno di G(z) e si dica se tale guadagno coincide con il guadagno statico del sistema.

4.2 Si discuta la stabilità del sistema.

	Firma:
4.3	Si determini l'espressione analitica ($y(k)=$) della risposta di $G(z)$ allo scalino unitario.
4.3	Si determini i espressione anantica $(y(k))$ dena risposta di $O(z)$ ano scanno dintario.
4.4	Si determinino, facendo uso degli appositi teoremi, il valore iniziale e, se possibile, il valore finale della risposta di $G(z)$ allo scalino unitario.