
Prof. Luca Bascetta (luca.bascetta@polimi.it)

Politecnico di Milano

Dipartimento di Elettronica, Informazione e Bioingegneria

Automatic Control
Systems theory overview (discrete time systems)

mailto:luca.bascetta@polimi.it


Prof. Luca BascettaProf. Luca Bascetta

We complete the fundamentals of systems theory with the basic knowledge 

on discrete time systems.

The main topics we will face are:

• discrete time systems

• Linear Time Invariant systems

• stability of equilibria of nonlinear systems

• the Z transform

• transfer function of a LTI system

• time response of a first order system

• frequency response
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Discrete time systems are dynamical systems whose variables are referred 

to a “time” that is not continuous but discrete, i.e. “time” 𝑘 is an integer 

number.

Why are we interested to consider discrete time systems?

• “Natura non facit saltus”, but there are systems in economics, ecology, 

sociology, etc. that can be naturally described with discrete time systems

• the control algorithm executed by a (embedded) processor evolves like a 

discrete time system

Discrete time systems (I) 3
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A discrete time system is characterized by 𝑚 input

and 𝑝 output variables.

As in continuous time systems, we call order 𝑛 of the dynamical system the 

minimum number of initial conditions we need to compute the system output 

given the input values from the initial time.

A discrete time system is described by the following 𝑛 state and 𝑝 output 

difference equations

We could introduce the same classification presented for continuous time 

systems. Discrete time systems can be: SISO or MIMO, strictly proper or 

proper, linear or nonlinear, time invariant or time varying.

Discrete time systems (II) 4
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Given a discrete time system, an initial condition at time 𝑘0, and an input 

function for 𝑘 ≥ 𝑘0, we call

• state trajectory, a solution of the state equations that starts from the 

given initial condition

• output trajectory, the trajectory determined by the output equations given 

the state trajectory

A constant trajectory, generated by a constant input function, is called 

equilibrium.

Given a constant input ത𝑢, the equilibria are solutions of the following 

equations

We could introduce the same definitions of stable, unstable, and 

asymptotically stable trajectory (or equilibrium).

Discrete time systems (III) 5
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We would like to find an algorithm to compute the solutions of the scalar 

equation

where 𝑓 is a general nonlinear function.

We start from a guess solution 𝑥0 and iterate following the algorithm

where 𝑘 represent the iteration index.

We observe that the equilibria of the previous system are the solutions of 

the equation

i.e., the equilibria are the solutions we are looking for.

We conclude that, if the equilibria are asymptotically stable and the guess 

solution is sufficiently close to them, after some iterations the algorithm will 

converge to the solutions we are looking for.

Discrete time systems – Example 6
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If all the functions 𝑓𝑖 and 𝑔𝑖 are linear with respect to the state and input 

variables, and do not depend on time 𝑘, the discrete time system is called 

Linear and Time Invariant (LTI) system.

A LTI discrete time system is described by the following equations

Given an initial condition 𝒙0, we can iteratively compute the state trajectory

From these relations we can derive the general expression of the state 

trajectory of LTI discrete time systems.

Linear Time Invariant systems (I) 7
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Observing that

• the zero-input response is linear with respect to the initial condition

• the zero-state response is linear with respect to the input

we conclude that for LTI discrete time systems the superposition principle

holds.

Linear Time Invariant systems (II) 8

Zero-input response

Generated by the initial

condition only

Zero-state response

Generated by the input only
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Given a LTI discrete time system

the state equilibria are the solutions of the following equation

If matrix 𝐈𝐧 − 𝐀 is non singular (i.e., 𝐀 has no eigenvalues 𝜆𝑖 = 1), there 

exists a unique state equilibrium given by

and the output equilibrium is

Linear Time Invariant systems (III) 9

Static gain
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We will now recall other properties of continuous time systems that hold for 

discrete time systems as well.

Change of variables

Controllability

The system is completely controllable if and only if rank 𝐊𝑟 = 𝑛.

Observability

The system is completely observable if and only if rank 𝐊𝑜 = 𝑛.

Linear Time Invariant systems (IV) 10
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Concerning the stability of LTI discrete time systems, the following 

conclusions, already derived for continuous time systems, hold

• the trajectories are all stable, all unstable or all asymptotically stable

• stability is a property of the system

• stability can be assessed studying the zero-input response of the system

Analyzing the stability of continuous time systems, we discovered it 

depends on the zero-input response of the following system

where 𝛿𝐱 is the difference between the nominal and the perturbed state 

trajectory.

The zero-input response is given by

Assuming the state matrix 𝐀 is diagonalizable, we can introduce a change 

of variables that decouples the trajectories and simplifies the computation of 

the matrix exponential.

Linear Time Invariant systems (V) 11
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We conclude that the zero-input responses are linear combinations of the 

terms

that we call characteristic modes or natural modes of the LTI discrete time 

system.

Let’s look at the different behavior of the modes for 𝜆𝑖 ∈ ℝ.

Linear Time Invariant systems (VI) 12
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Linear Time Invariant systems (VII) 13

𝜆 > 1 𝜆 = 1 0 < 𝜆 < 1

−1 < 𝜆 < 0 𝜆 = −1 𝜆 < −1
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Let’s analyze the modes, assuming that 𝜆𝑖 ∈ ℂ (𝜆𝑖 = 𝜌𝑖e
j𝜃𝑖)

making the linear combination, the imaginary part is cancelled out by the 

imaginary part of the complex conjugate of 𝜆𝑖. 

As a consequence we have

• 𝜆𝑖
𝑘 when 𝜆𝑖 ∈ ℝ

• 𝜌𝑖
𝑘 cos(𝜃𝑖𝑘 + 𝜑𝑖) when 𝜆𝑖 ∈ ℂ

Let’s know analyze these two modes in view of the stability condition.

Linear Time Invariant systems (VIII) 14
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The analysis of the two modes 𝜆𝑖
𝑘 and 𝜌𝑖

𝑘 cos(𝜃𝑖𝑘 + 𝜑𝑖) reveals that:

• if all the eigenvalues of matrix 𝐀 lie inside the unit circle (𝜌𝑖 < 1), all the 

modes are bounded and tend to zero asymptotically

• if all the eigenvalues of matrix 𝐀 lie inside the unit circle or on the 

circumference (𝜌𝑖 ≤ 1), and there is at least one eigenvalue on the 

circumference (𝜌𝑖 = 1), all the modes are bounded but the modes 

associated to the eigenvalues on the circumference do not tend to zero 

asymptotically

• if at least one eigenvalue of matrix 𝐀 lies outside the unit circle (𝜌𝑖 > 1), 

there is at least one mode that is not bounded

Linear Time Invariant systems (IX) 15
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Based on the previous analysis we conclude that an LTI discrete time 

system with diagonalizable state matrix is:

• asymptotically stable, if and only if all the eigenvalues of matrix 𝐀 lie 

inside the unit circle ( 𝜆𝑖 < 1 ∀𝑖)

• stable, if and only if all the eigenvalues of matrix 𝐀 lie inside the unit 

circle ( 𝜆𝑖 ≤ 1 ∀𝑖) and there is at least one eigenvalue on the 

circumference (∃𝑖: 𝜆𝑖 = 1)

• unstable, if and only if there is at least one eigenvalue of matrix 𝐀 lying 

outside the unit circle (∃𝑖: 𝜆𝑖 > 1)

In the general case of non diagonalizable state matrices it can be shown 

that, if all the eigenvalues of matrix 𝐀 lie inside the unit circle, and there are 

multiple eigenvalues on the unit circle, the system is unstable if there is at 

least one eigenvalue on the unit circle whose geometric multiplicity is less 

than the algebraic multiplicity.

As for continuous time systems, the stability is a structural property of the 

system.

Linear Time Invariant systems (X) 16
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As we did for continuous time systems, we would like to investigate the 

existence of tools to perform the stability analysis without computing the 

eigenvalues.

If we focused on criteria to assess the stability of a system analyzing its 

characteristic polynomial, we can proceed in two ways:

• Jury criterion, it gives the conditions to ensure that a polynomial has all 

the roots inside the unit circle

• introduce a change of variables ensuring that, if the transformed 

polynomial has all the roots in the open left half plane, the original 

polynomial has all the roots inside the unit circle

An example of change of variables satisfying this property is the bilinear 

transformation

Linear Time Invariant systems (XI) 17
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Consider the following characteristic polynomial

applying the bilinear transformation we obtain

Equating to zero in order to create the characteristic equation

and expanding the powers

To this polynomial we can apply the Routh criterion

We conclude that the polynomial in “s” has all the roots 

in the open left half plane and, consequently, the 

polynomial in “z” has all the roots inside the unit circle.

Linear Time Invariant systems – Example 18
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Given a nonlinear time invariant system

and an equilibrium

We can locally approximate the nonlinear system, around the equilibrium, 

with the linearized system

where

and

Stability of equilibria of nonlinear systems (I) 19
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As the linearized system is a LTI system, we can assess the stability of the 

equilibrium point of the nonlinear system analyzing the state matrix

We can state the following results:

• if all the eigenvalues of matrix 𝐀 lie inside the unit circle ( 𝜆𝑖 < 1), the 

equilibrium point is asymptotically stable

• if at least one eigenvalue of matrix 𝐀 lies outside the unit circle (∃𝑖: 𝜆𝑖 >
1), the equilibrium point is unstable

If the eigenvalues of matrix 𝐀 lie inside the unit circle and there is at least 

one eigenvalue on the circumference the linearization, that is a first order 

approximation, is too rough to assess the stability of the equilibrium point.

Stability of equilibria of nonlinear systems (II) 20
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Given a LTI system

as we did for continuous time systems, we can introduce a representation of 

the LTI system in the frequency domain

𝑢(𝑘) 𝑈(𝑧)

𝑦(𝑘) 𝑌(𝑧)

The input-output relation in the frequency domain is again an algebraic 

relation between the input and output transforms.

For discrete time systems this transformation is performed using the Z 

transform.

The Z transform (I) 21

Z transform

Inverse Z transform

Algebraic

equations

Difference

equations
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Given a real function 𝑣 𝑘 , where 𝑘 is an integer number and 𝑘 ≥ 0, we call 

Z transform of 𝑣 the complex function

of the complex variable 𝑧.

Usually this series converges only for the values of 𝑧 lying outside a circle of 

radius 𝑟 ( 𝑧 > 𝑟 > 0).

We will assume as the Z transform of 𝑣 𝑘 the sum of the series computed 

for the values of 𝑧 where the series is convergent.

Let’s see how to compute the Z transform of some common signals.

The Z transform (II) 22
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Discrete time unitary impulse

Given the unitary impulse (Kronecker delta)

we have

Discrete time exponential

Given a discrete time exponential 𝑣 𝑘 = 𝑎𝑘 we have

If 𝑎 = 1 then 𝑣 𝑘 = sca 𝑘 and the Z transform is

The Z transform (III) 23
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We now review the most important properties of the Z transform.

Linearity

Time shift

First derivative in z-domain

Initial value theorem

Final value theorem (if 𝑝𝑖 < 1 or 𝑝𝑖 = 1)

The Z transform (IV) 24
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Discrete time ramp

Given the ramp signal

we have

Discrete time exponential

Consider a signal with Z transform 𝑉 𝑧 =
𝑧

𝑧−𝑎
, from the initial and final value 

theorems we have

The Z transform – Examples 25

The results are coherent 

with 𝑣 𝑘 = 𝑎𝑘
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Let’s recap the Z transform of the main signals we will face studying 

discrete time systems.

The Z transform (V) 26
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In order to come back to the time domain we need to introduce the inverse 

transform.

If we focused on rational Z transforms (ratio of polynomials), we can use the 

Heaviside method to expand the rational function in partial fractions.

With Z transform is better to expand 
𝑉 𝑧

𝑧
instead of 𝑉 𝑧 .

Let’s see the example of a Z transform with distinct roots.

The expansion in partial fractions is given by

multiplying now each side by 𝑧

and applying the inverse transform at each addend

The Z transform (VI) 27
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Another technique to recover the signal in the time domain is the polynomial 

long division, that allows to compute the samples of the time domain signal.

Consider the ratio between numerator and denominator

from this expression the samples of 𝑣 𝑘 follow

The Z transform (VII) 28
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Consider the following Z transform

Applying Heaviside method we obtain

and evaluating the numerator for 𝑧 = 0, 𝑧 = −2, 𝑧 = −3

The Z transform – Example (I) 29
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Consequently

and applying the inverse transform

What happens if we perform the long division?

The first four samples are

and are coherent with the previous expression of 𝑣 𝑘 .

The Z transform – Example (II) 30
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Given a LTI system

and assuming zero initial conditions, we apply the Z transform to both sides 

of the equations, obtaining 

The relation in the frequency domain between 𝐔 𝑧 and 𝐘 𝑧 is called 

transfer function and it is given by

We observe that 𝐆 𝑧 is a 𝑝 𝑥 𝑚 matrix.

Transfer function of a LTI system (I) 31
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The transfer function for a discrete time and for a continuous time system 

has the same analytical expression.

For this reason they also shares the same properties:

• the transfer function is invariant with respect to change of variables

• for SISO systems the transfer function is a ratio between two 

polynomials

• we call zeros the roots of the numerator, and poles the roots of the 

denominator

• if there are no zero-pole cancellations the poles coincide with the 

eigenvalues of matrix 𝐀

Transfer function of a LTI system (II) 32
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We call type 𝑔 of a transfer function the number of poles/zeros in 𝑧 = 1.

As a consequence if:

• 𝑔 ≥ 1, there are 𝑔 poles in 𝑧 = 1

• 𝑔 = 0, there are no zeros/poles in 𝑧 = 1

• 𝑔 ≤ −1, there are −𝑔 zeros in 𝑧 = 1

Given a type 0 transfer function, we call the following constant

gain of the transfer function.

We observer that in this case (𝑔 = 0) the gain of the transfer function is 

equal to the static gain of the LTI system.

If 𝑔 ≠ 0 the gain definition can be generalized as follows

Transfer function of a LTI system (III) 33
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We conclude observing that in the case of discrete time systems the delay 

has a rational transfer function.

Consider a time delay of ℎ discrete steps

Transforming each side of this relation we obtain

and the transfer function of the time delay is

a unity gain system with ℎ poles in 𝑧 = 0.

Transfer function of a LTI system (IV) 34
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Consider a first order system

We can compute the step response

and

Applying the inverse Z transform we obtain

If 𝑝 < 1 the system is asymptotically stable and the step response 

asymptotically converges to 𝜇.

Time response of a first order system (I) 35
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A peculiarity of discrete time systems: even the step response of a first 

order system can exhibit oscillations.

Time response of a first order system (II) 36

0 < 𝑝 < 1 −1 < 𝑝 < 0
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Given a general LTI asymptotically stable discrete time system, represented 

by the transfer function 𝐺(𝑧), in steady state a sinusoidal input

generates a sinusoidal response of the same frequency

The frequency response of a system whose transfer function is 𝐺(𝑧) is

a complex function of the real variable 𝜃.

Remember that the frequency response can be defined for stable and 

unstable LTI systems.

Frequency response (I) 37


