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EXERCISE 1

1. A mobile robot is characterised by k kinematic constraints, that are expressed in Pfaffian form as
AT (q) q̇ = 0, where q ∈ Rn is the configuration vector. Illustrate all the steps of the procedure that
allows to derive the kinematic model of the robot, and write the general expression of the kinematic
model.

Denoting by
{g1 (q) ,g2 (q) , . . . ,gn−k (q)}

a basis of Null
(
AT (q)

)
, the admissible trajectories of the robot are solutions of the nonlinear

dynamic system

q̇ =

m∑
j=1

gj (q)uj = G (q)u m = n− k

We thus call this dynamic system kinematic model of the robot.

2. Perform all the steps described in the previous item, from the definition of the configuration vector
and the A (q) matrix to the expression of the kinematic model, for a unicycle robot.

The configuration of a unicycle robot is described by the position of the wheel contact point and
the wheel orientation, i.e., q =

[
x y θ

]
.

The robot is characterised by one nonholonomic constraint, the pure rolling constraint, whose ex-
pression in Pfaffian form is

AT (q) q̇ =
[
sin θ − cos θ 0

]
q̇ = 0

A basis of Null
(
AT (q)

)
is given by the two vectors

g1 (q) =

cos θ
sin θ

0

 g2 (q) =

0
0
1


The kinematic model can be thus expressed asẋẏ

θ̇

 =

cos θ
sin θ

0

u1 +

0
0
1

u2
where u1 = v and u2 = ω are the linear and angular velocity of the robot.



3. Draw the Simulink diagram required to simulate the kinematic model of a unicycle robot. If you
make use of user-defined functions include the code of each function.

A possible Simulink diagram to simulate the kinematic model of a unicycle robot is shown in the
picture below.

The user-defined function unicycle kinematic is composed of the following lines of code:

f unc t i on ds ta t e = u n i c y c l e k i n e m a t i c (v , omega , theta )

dx = v∗ cos ( theta ) ;
dy = v∗ s i n ( theta ) ;
dtheta = omega ;

d s ta t e = [ dx , dy , dtheta ] ;

EXERCISE 2

1. As a result of an experimental campaign performed on snow, a tire lateral force has been charac-
terised interpolating experimental data with the following Pacejka Magic Formula (whose plot is
shown in the picture below)

Fy
Fz

= 0.3 sin (2 arctan (5α− (5α− arctan (5α))))

Determine, using the Magic Formula and motivating the result, the value of the cornering stiffness,
and draw on the picture the cornering stiffness approximation of the lateral force/slip relation.

From the magic formula it follows that B = 5, C = 2, and D = 0.3. As a consequence the cornering
stiffness is given by BCD = 3 Ns/rad.
The cornering stiffness approximation is shown in the picture below.



2. The cornering stiffness approximation cannot represent the tire force saturation. Illustrate a mod-
elling approach (different from the Pacejka Magica Formula) that allows to represent the saturation
and is suitable for model-based control.

A well-known modelling approach that is suitable for model-based control and allows to represent
the saturation is Fiala tire model

Fy =

 Cαz

(
−1 +

|z|
zsl
−

z2

3z2sl

)
|z| < zsl

−µFzsign (α) |z| ≥ zsl

where α is the slip angle, Cα the cornering stiffness, z = tan (α), and zsl is the minimum value of z
that gives full sliding.

3. During a curve the same tire is characterised by a slip angle of 5 deg. What is the corresponding
value of the lateral force Fy, assuming Fz = 150 N? What is the maximum longitudinal force Fx
the tire can generate in these conditions?

From the Pacejka Magic Formula (or the picture) it follows that µ = 0.3, as a consequence the
maximum force the tire can generate is µFz = 45 N.
When α = 0.0873 rad the lateral force is equal to

Fy = 150 (0.3 sin (2 arctan (5α− (5α− arctan (5α))))) = 31.67 N

According to the friction circle constraint, the maximum value of the longitudinal force Fx is given
by

Fx =
√
µ2F 2

z − F 2
y = 31.97 N

EXERCISE 3



1. Write and explain the pseudocode of the algorithm to construct the probabilistic roadmap used by
PRM.

The PRM algorithm to construct the roadmap follows:

V ← ∅;
E ← ∅;
for i = 1, . . . , N do

qrand ← SampleFreei;
U ← Near (G,qrand, r);
V ← V ∪ {qrand};
foreach u ∈ U in order of increasing ‖u− qrand‖ do

if qrand and u are not in the same connected component of G then
if CollisionFree (qrand,u) then

E ← E ∪ {(qrand,u)};
end

end

end

end
return G = (V,E)

N vertex are sampled from the free space, then for each vertex qrand the set of near nodes, i.e., the
set of nodes in a ball of radius r centred in qrand, is computed and all the collision free connections
between qrand and the nodes in the near node set that are not in the same connected component
are generated.

2. Explain how the previous algorithm has to be modified in order to obtain sPRM and PRM? al-
gorithms.

The only difference between sPRM and PRM is that sPRM connects all the nodes in the near node
set, without checking if they are in the same connected component.
The sPRM algorithm to construct the roadmap follows:

V ← {qinit} ∪ {SampleFreei, i = 1, . . . , N};
E ← ∅;
foreach v ∈ V do

U ← Near (G,v, r) \ {v};
foreach u ∈ U do

if CollisionFree (v,u) then
E ← E ∪ {(v,u)};

end

end

end
return G = (V,E)

The only difference between PRM and PRM? is in the way the near set is computed. In PRM? the
radius of the near neighbourhood is related to the number of sampled nodes, i.e.,

U ← Near
(
G,qrand, γPRM (log (N) /N)1/d

)
\ {qrand}



where d is the dimension of the configuration space, and γPRM is a suitable constant.

3. After the execution of some iterations of PRM algorithm we have the situation depicted below

where the black dots are the nodes sampled in previous iterations, the red dot is the node sampled in
the actual iteration, the green blobs are obstacles and the black dashed circle is the neighbourhood
considered to defined the Near set.
Draw in the left picture the result of an iteration of PRM and in the right picture the result of an
iteration of sPRM.

The result of an iteration of PRM (left picture) and of sPRM (right picture) is shown in the pictures
below

EXERCISE 4

1. What is the canonical simplified model for nonholonomic mobile robots? Why is it important in the
context of designing a controller for a nonholonomic robot?



The canonical simplified model is a way to unify in a single model the unicycle, differential drive and
bicycle kinematic models, in order to apply the same controller design procedure to the different
kinematic models. The canonical simplified model has the following expression

ẋ = v cos θ

ẏ = v sin θ

θ̇ = ω

2. Show how the unicycle, differential drive, and rear-wheel drive bicycle kinematic models can be
made equivalent to the canonical model.

The canonical model is the model of a unicycle robot.
The differential drive model can be reduced to the unicycle model applying the following transform-
ation

ωR =
v + ωd/2

r
ωL =

v − ωd/2
r

where ωR and ωL are the right and left wheel velocities, r is the wheel radius, and d is the distance
between left and right wheel contact point.
For the rear-wheel drive bicycle we need to assume that the steering rate limit is so high that the
steering angle can be changed instantaneously, then the bicycle model can be reduced to the unicycle
model applying the following transformation

v = v φ = arctan

(
ω`

v

)
where φ is the steering angle and ` the length of the bicycle.

3. Consider a bicycle kinematic model without reverse. Show how the actuation constraints 0 ≤ v ≤ vM
and −φM ≤ φ ≤ φM can be rewritten in terms of the canonical model input variables.

Considering the transformation for the bicycle

v = v φ = arctan

(
ω`

v

)
and assuming that arctan (x) ≈ x, we have

0 ≤ v ≤ vM − φM ≤
ω`

v
≤ φM

The second constraint can be rewritten as two separate constraints as follows

ω ≤ φM
`
v ω ≥ −φM

`
v


